
I

I

I
fELECTE

I1 B

I.,I

DEPARTMENT OF THE AIR FORCE

I AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

3. Wright-Patterson Air -orce Base, Ohio

*A.4pmw s*w 91 1 3 052

I 7

AFIT/GE/ENG/90D-70

I
I
I
I
I
I
I
I

AN EVALUATION OF AN Ada IMPLEMENTATION OF
THE RETE ALGORITHM

FOR EMBEDDED FLIGHT PROCESSORS

THESIS

F. Jesse Fanning, Captain, USAF

IAFIT/GE/ENG/90D-70

I DTIC
AELECTE* -D

I
i Approved for public release; distribution unlimited

I

I
AFIT/GE/ENG/90D-70

I

U AN EVALUATION OF AN Ada IMPLEMENTATION OF

THE RETE ALGORITHM

FOR EMBEDDED FLIGHT PROCESSORSI

I "TI-TES ISI
Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical EngineeringI
I
* F. Jesse Fanning

Captain, USAFI
December 1990

I
i Approved for public release; distribution unlimited

I
I

I

SPreface

I This thesis grew from the Air Force's research into the use of expert systems in

advanced avionics architectures. Expert systems based on Rete lie at the heart of many of

the Air Force's projects in this area. This thesis addresses the suitability of an Ada

implementation of Rete for an embedded avionics flight processor. Readers desiring an

introduction to expert systems and Rete may refer to Appendix B. A glossary of technical

I terms and abbreviations used throughout this thesis is contained in Appendix A. This

research was sponsored by the Avionics Laboratory, Wright Research and Development

Center under In-House Project 20031112 (Fanning, 1989).

I wish to thank my thesis advisors, past and present, and the members of my committee

for their continued guidance and support during the research and preparation of this thesis.

Thanks also to my academic advisor, B.C. George who kept the faith throughout.

I wish to acknowledge the contributions of three individuals whose technical inputs

were vital to this research: W.A. White of Barrios Technology Inc., lead programmer of

CLIPS/Ada, who never tired of debugging code over the telephone and many thousands of

miles; J.S. Labhart of Merit Technology Inc., who provided special insights into Rete, its

implementation, and its application; and D.S. Nichols of TRW Inc., lead programmer of

AARTS, who made clear the possibilities and limitations of the target environment.

Special thanks to J.L. Blair, my boss and my friend, who enabled me to advance

I confidently in the direction of my dreams. Thanks to J.S. Wilgus, whose care and support

helped me to weather many crises. Finally, very special thanks to C.G. Coleman, whose

3 indomitable spirit was infectious, and whose integrity as a researcher was inspiring. ,

I F Jesse Fanning4

IDDistribution/
Availability CodesIAVail and/or

Di8st Speolal.

I- --- -

Table of Contents

List of Figures..

IList of Tables...

1. Introduction..
Problem Statement

Structure of this Thesis

II. Background. 4
Expert Systems in the Cockpit 4
Current Expert Systems Research

The Rete Algorithm
Rete Implementation 7
Current State of Rete 9

Contributions. 10

Summary 11
111. Design of the Expert System Shell. 12

AARTS Operating System 13
Design of the Expert System Shell. 15

CLIPS/Ada. 15ILOAD Module. 16
UPDATE Module. 17
FORWARD-CHAIN Module.............................. 19IA / O h l m l m nain-

VAX/AOSSh Implementaon.................................. 20

Summary... 12

I IV. Analysis.. 23
Analysis of the Rete Algorithm.................................. 23

Time Complexity of Rete................................. 23ISpace Complexity of Rete................................ 23
Description of the CLIPS/Ada Functions............................ 25

RETRACT.. 293 PCA.. 30
Source Code Analysis.. 30

CLIPS Time Complexity.................................3
CLIPS Space Complexity................................. 33

Relevance of the CLIPS Theoretical Analysis to Rete..................... 35
CLIPS Empirical Analysis..................................... 35

I

A IT Benchm arks 35
Testing Conditions 38
Testing Controls .. 39

Sum m ary 41

Time Complexity 42
Number of Instantiations 42
Num ber of O bjects 42
Negative Logic A ssert 45
Number of Entries into Join Net 46
Worst Case Tir- - Complexity 47

Space Complexity .. 47
N um ber of Rules 47
Number of Join Net Entries 19
Worst Case Space Complexity 5u

Impact on System Response 50
Implications for Embedded Processing 50
A n A verage C ase . 51
S urrIn a y . 52

VI. Conclusions and R ,commendations 53
Recom m endations .. 57

I Appendix A. Technical Terms and Abbreviations 59

Appendix B. An Introduction to Production Systems and the Rete Algorithm 62
The Knowledge Base 63

The Fact B ase .. 63
Th e R ule Base 64

Expert System Types 65
Forward Chaining Systems 65
Backward Chaining 66
Forward and Backward Chaining Systems 67

The Production System Inference Engine 67
A System Exam ple 68

The Rete A lgorithm 73
The Rete Net 74
Conflict Resolution 78

Applications of the Rete Algorithm 79
Sum m ary . 80

Appendix C. ESShell Implementation Notes 81
The ESShell and the AOS 81
Development of the ESShell 82

ESShell .. 83
LO AD 83
UPDATE 83FORWARD CHAIN' 83
CLIPS/Ada Components 84

I iv

I
I

I

ESShell UPDATE Module 85
AOS Components 86

Implementation Challenges 88
CLIPS Bugs 89
AOS Bugs 91

Implementation Effects on ESShell Design Goals 93
Interruptabilty ... 93
Domain Independence 94
Synopsis of Code Developed 95

Implications for Future Development 97
Summary .. 99

Bibliography .. 100

I v it10 4

I
I
I
I
I
I
I
I
I
I
Iv
I
I

I
3 List of Figure

S1. A Rete Network .. 6

2. The VAMP Architecture 13

3. The ESSheli Modules .. 16

4. The UPDATE Modules...............18

5. The FORWARD-CHAIN Modules 20

I 6. The VAMP/AOS Module Layout 22

7. Sample Rules and Net .. 27

9. Test 1-2a with 1,000 - 10,000 Fact Instantiations 43

1 10. Test 1-2b with 1,000- 10,000 Objects 44

11. Assert Performance: Objects vs. Facts 44

I 12. Positive vs. Negative Logic Asserts 45

13. Test 5-la Rules Sharing LHS Patterns 46

14. System Space with 10 Rules Compiled 48

15. System Space with 0 Facts and 10 - 100 Rules '18

16. System Space with 400 facts and 10 - 200 Rules Sharing LHS Patterns 49

I 17. Real-time Expert System Development Model 56

18. A Simple Inheritance Rule 64

19. A Simple Rule Interpreter 69

I 20. Sample Rules for the Animal World 71

21. Sample Assertions for the Animal World 72

3 22. Sample Output of the Animal Identifier 72

23. A Sample Rule Using One-Input Nodes..........................76

24. A Sample Rule Using a Two-Input Node 77

I- Vi

n

I

I
25. A Sample Data Filter..88

26. ESShell System Implementation...................................96

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I vii

I
I

I
I List of Tables

I 1. Summary of Forgy's Theoretical Analysis........................... 25

2. Developed vs Modified Software................................. 95

I
I
I
I
I
U
I
I
I
I
I
I

I
I

I
3 AF!I, ,E/ENG/90D-70

I Abstract

3 The purpose of diis--eseach was to design and develop an expert system shell in Ada,

and to evaluate the shell's execution and size performance to determine its suitability for

3 real-time operation on the MIL-STD-1750A embedded flight processor. The expert system

shell uses the CLIPS/Ada inference engine, a forward-chaining Ada implementation of

I Rete. The expert system shell design is presented along with an overviev, of the target

environment-- the MIL-STD-1750A VHSIC Avionic Modular Processor (VA.IP, running

under the Ada Avionics Real-Time Software (AARTS) Operating System. ITheoretical and

3 empirical complexity analyses of the inference engine are presented and discussed in view

of their impact on VAMP application. The performance of this inference engine was

3 affected by five parameters of the knowledge base: a) the number of objects in working

memory, b) the structural complexity of the objects and rules, c) the number of rules 'A hich

share object match patterns, d) the number of match patterns per rule, and e) the number of

3 objects bound to a match pattern. The inference engine's execution response time vas

found suitable for real-time operation on the VAMP, however, its memory requirement ,,as

3 not.

I
I
I
I
I ix

I
I

I
I

AN EVALUATION OF AN Ada IMPLEMENTATION OF

3 THE Rete ALGORITHM

FOR EMBEDDED FLIGHT PROCESSORSI
I. Introduction

The Air Force has a need for expert systems which can operate in real unie on

embedded flight computers. Mil-STD-1750A, the Air Force's standard flight computer

architecture, however, places severe constraints on applications software processing.

Software programs must fit within the 1750A's 256 Kwords of core memory and execute

3 quickly enough to solve life-critical problems, characteristics uncommon to expert systems.

The definition of real time used in this research is performing a task (i.e. solving a

I problem) in a specified amount of time.

The Wright Research ax Development Center's Avionics Laboratory identified a need

for an expert system which could execute on the Air Force's next-generation

3 implementation of the MIL-STD-1750A flight processor architecture, the VAMP (Vf ISIC

Avionic Modular Processor, or V1750A). This expert system also must be written in Ada

I and be able to run under the V1750A's operating system AARTS (Ada Avionics Real-Time

Software). Rete, an optimized forward-chaining inference system developed by Dr Charles

Forgy of Carnegie Mellon University, shows promise as a candidate for the embedded

application. Rete diaws its efficiency from two basic assumptions about expert systems:

many conditions are shared among production rules (structural similarity); and only a small

I
I
I

I

3 percentage of changes are made to working memory during any given e ecution cycle

(temporal redundancy). The validity of these assumptions is supported by the results of

I this research using an Ada-based version of Rete.

Problem Statement. The Air Force has committed time, energy, and dollars to the use of

3 Rete in time and life critical applications. Research to date, however, has been limited to

specialized development systems and general purpose computers. Work must be done with

I Rete on the actual hardware intended for airborne applications-- the embedded flight

computer. An Ada implementation of Rete must be tested on a flight computer under

realistic conditions prior to serious consideration of its inclusion into the system avionics

3 software architecture. The issues critical to future development of embedded expert

systems must be identified and addressed.I
Purpose. The purpose of this research was to:

• design and develop a prototype expert system shell compatible with the

3 AARTS Operating System, and suitable for testing on an embedded flight

computer, and

3 • evaluate the expert system shell's performance, to determine its suitability for

embedded real-time flight operation on the VAMPs.

The expert system shell performance was evaluated in two areas: its ability to respond

3 effectively under quickly changing conditions, and its ability to compile extensive rule

bases into the limited amount of flight processor memory available.I
. This effort evaluated the performance and storage requirements of an Ada

I implementation of Rete for embedded flight processors and developed an embedded expert

* 2I
I

I
3 system shell for operation on the VAMPs. The forward-chaining inference engine used

was derived from NASA's CLIPS/Ada implementation of Rete. A VAMP was the target

I architecture for the Rete implementation, configured with 256 Kwords of RAM consisting

of 16 bit words. A kernel executive resident on the host processor was provided by

AARTS for scheduling of the expert system and providing it with data from the aircraft.

3 The expert system, including working memory, discrimination net (rules), and inference

engine, was to reside in the remaining flight processor memory. Due to memory model

limitations of the AARTS Operating System which prevented testing of the expert system

shell on the VAMP hardware, the development and testing of the expert system shell was

accomplished on a VAX.

Structure of this Thesis. Chapter Two of the thesis presents background material and

research in the area of expert systems and embedded computers. Chapter Three of the

thesis contains the detailed approach, methodology, and design of the inference engine.

Issues relating to the implementation on the embedded flight processor are discussed.

3 Chapter Four contains the theoretical and empirical analyses of the CLIPS/Ada

implementation of Rete. The results of the empirical tests supporting the theoretical analysis

3 are presented in Chapter Five. Chapter Six contains the conclusions and recommendations

for future embedded flight processor implementations. Appendix A contains a glossary of

I technical terms and abbreviations. Appendix B contains an overview of forward-chaining

expert systems. Finally, Appendix C describes the specific changes made to NASA's

CLIPS/Ada, the design decisions that were made to interface CLIPS/Ada to AARTS, and

3 the structure of new software modules that had to be developed.

I
I3
I
I

I
3 II. Background.

This chapter provides the background in expert systems research necessary for an

understanding of the major issues in expert systems and real-time flight software research.

3 The role of expert systems in today's fighter aircraft is discussed, along with current

research in this area. The Rete system, the basis for this research, is presented and current

Rete implementations are discussed. Readers desiring an introduction to expert systems

3 and to how Rete differs from typical forward-chaining expert systems' inference engines

may find this information in Appendix B.I
Expert Systems in the Cockpit. Since the advent of the digital flight computer, combat

U aircraft have steadily grown from single mission fighters to flexible multi-role platforms.

3 Reprogrammable flight software gives the aircraft increased mission capabilities. Along

with this flexibility, the complexity of the cockpit environment has increased explosively.

3 Pilots must not only be able to fly high performance aircraft, but must coordinate the

information provided by on-board computers in areas such as navigation, aircraft systems

I management, weapons delivery, and communications. Information overload and high

workloads often overtask the pilot during periods of high stress, such as aerial combat.

Expert systems technology is currently being researched as a solution to this problem.

3 Expert systems, programmed to emulate human decision making, can assume lower level

tasks, allowing the pilot to "fly and fight" and make higher-level mission decisions. Expert

3 systems are now being developed to aid the pilot in many areas, which include mission

planriing, as well as system, target, and threat management. The Pilot's Associate Program

(Lizza, 1988), sponsored by the Wright Research and Development Center (WRDC), and

3 the Defense Advanced Research Projects Agency (DARPA), is aimed at merging expert

systems functioning in mission-critical areas into a cohesive system to aid the pilot.

I4
I
I

I
I

Current Expert Systems Research. To date, expert systems research has been conducted in

I laboratory environments with specialized computers and reduced problem domains.

Researchers typically use workstations and software tools specifically designed to rapidly

prototype expert systems. This approach has helped bring expert systems to national

I attention, with fielded systems ranging from medical diagnosis to factory automation.

Little attention has been given to the problems associated with running expert systems in an

I embedded computer environment such as that of a flight processor. There are two

* important aspects of flight computing: speed of execution and memory size. Execution

speed in flight computing is crucial to the response time of applications software in critical

3 situations. The memory size of flight computers is typically very limited, usually with no

support for virtual memory.

The Rete Algorithm. Much emphasis has been placed on the execution efficiency of

expert systems, the most important of which is the work done by Charles Forgy of

Carnegie Mellon University. He has shown that a large percentage of the execution time in

3 a typical expert system is spent matching objects in memory with their conditions for

execution (Gupta and Forgy, 1983:5). A production system (a particular type of expert

3 system) is composed of three elements: working memory, a set of if-then rules, and an

iterative control loop called an inference engine. A more complete description of

I production systems may be found in Appendix B. In previous production systems, the

Left Hand Sides (LHSs), or the "if' part of the if-then rules were matched against all

objects in working memory on each loop. With the number of working memory elements

3 in the thousands, and rules numbering in the hundreds for a real-world problem, the pattern

matching was quite extensive. Dr Forgy created a scheme called Rete for improving.the

U efficiency of the match cycle. The term Rete is derived from the greek word for net. The

*5

I
efficiency of Rete is based on two principles: temporal redundancy and structural similarity

(Forgy, 1979:25-26). Temporal redundancy is Forgy's observation that on any given

I match cycle, less than five percent of the working memory elements are modified.

I Structural similarity describes the commonality of matching conditions among LHSs of

different rules. Rete is composed of two parts, a rule compiler and an inference engine,

which take advantage of these principles.

The Rete compiler uses the common matching conditions of different rules to create a

I discrimination net composed of the matches required to activate the rules. The nodes of the

net are themselves the test conditions for the matches. A node corresponding to a particular

match may be linked to all the rule paths which contain it in their LHSs. Results of the

I matches are stored in alpha memory, as shown in Figure 1.

IR\ /R
I

3R1 22

* Constant
Test

O .

0 Join Nodes / 4

Alpha Memory R 1.. .3

Beta Memory
Rx Relations

R I....4 R5

R ...5 Conflict Set

3 Figure 1. A Rete Network (Nayak et al., 1988:694)

I 6

I
I

I

U The state of the alpha memory nodes reflects the partial activation of rules in the net.

The LHS conditions represented by single rule-paths are brought together by join nodes.

The states of the join nodes are stored in beta memory. Once all joins for a rule path are

complete, a fully matched rule is placed on the conflict set. The conflict set is a list

containing all rules for a given cycle that are fully matched. Selection of the rule to execute

I is called conflict resolution, and is performed by the inference engine.

The Rete inference engine uses temporal redundancy to increase the speed of the match

cycle. Forgy found the cost of storing the match states in alpha memory to be less than that

of performing the associated tests on each cycle (Forgy, 1979:48). The inference engine

takes modifications to working memory, called tokens, passes them through the net,

I performs the match tests found at each node, and adds any resulting changes to the conflict

set. After conflict resolution, the Right Hand Side (RHS), or the "then" part of the selected

rule containing actions to be performed is executed, often modifying working memory.

These modifications may, in turn, activate new rules, placing them on the conflict set while

deactivating others, and removing them from the conflict set. Since the RHS of only one

I rule is executed during a loop, few working memory elements are modified. And since

these modifications are the only input to the net, and they are relatively few for each cycle,

the Rete inference engine attains a significant speedup in the match cycle. In fact, Rete

been shown to be the most efficient approach for the many object/many pattern match

problem (Gupta and Forgy, 1983; Nayak, et a., 1988).

Rete Implementation. Rete is used in a number of commercial expert system "shells"

or development systems. These shells are implemented in a variety of languages, including

LISP, C, and Ada, on a wide variety of hardware, including LISP machines, and mini and

micro computers. NASA has developed an Ada-based version of the C Language

itegrated Production System (CLIPS), an expert system development tool based on Rete.

I 7
I
I

I
The analysis and results presented in this thesis show that the forward-chaining inference

engine of CLIPS/Ada can be embedded as a callable procedure within Ada application

I programs.

Several challenges must be overcome, however, before Rete can be successfully

implemented on embedded flight computers due to limitations associated with flight

processor architectures and a small commercial market. First, embedded flight processors

such as the MIL-STD-1750A present a severe computing environment in terms of memory

size, execution speed, and communications. The 1750A flight computers are restricted to

256 Kwords of RAM, with a word length of 16 bits. This amount of memory is far

smaller than that available to most expert systems, which are usually implemented on

computers with much greater memory available. Not only is execution speed of the expert

system a concern, but this computer also has a significant communications overhead. Data

from sensors and other flight computers is received over the MIL-STD-1553B

communications bus. Normally encoded for transmission efficiency, the data must first be

decoded for use on the host processor.

Furthermore, flight processing software must be written in Ada by mandate of the

Department of Defense. Ada has some inherent limitations, such as strict data typing and

I lack of scheduling constructs, which make the implementation of expert systems

challenging. To complicate matters, an Ada kernel executive must be present on the flight

I processor, reducing the 256 Kwords available for application programs. Ada's memory

garbage collection strategy is implementation dependent, and may not be similar to that

found in LISP, forcing explicit memory management to be handled by application

* programs.

Another key problem in implementing expert systems on flight processors is data

I consistency. Working memory is assumed by the inference engine to be static during the

I8
I
I

I

selection of appropriate rules. Aircraft state data, however, is transmitted on the

communications bus at relatively high rates--typically between eight and thirty-two times

I per second. During periods of increased activity, such as target acquisition or aerial

combat, working memory objects may change at a rate that exceeds the inference engine's

ability to process them. Incoming data may be filtered to reduce the impact its rate of

change, but the type and extent of filtering must be determined by the application

programmer to suit the problem domain.

I Expert systems take considerably longer to execute (Nayak, et al., 1988), and lack the

interrupt capability normally found in embedded computer software. Also, the Rete

inference engine executes until the conflict set is empty, signifying problem solution. The

time spent in the number of loops necessary to solve a problem may exceed the tight

operational time constraint required (evading a missile, for instance), with failure yielding

I disastrous results.

Despite these challenges, Rete has been selected as the mechanism for expert systems

on a number of Air Force Projects, including the Pilot's Associate (Lizza, 1988) and the

Robotic Air Vehicle (RAV) (Lystaad, 1987). Another Air Force project, Ada Avionics

Real-Time Software (AARTS), is developing an Ada executive for use on the VHSIC

Avionics Modular Processor (VAMP) V1750A flight computer. An important element in

the AARTS architecture is an expert system shell which is implemented in Ada and callable

I by the system executive. The expert system shell described in this thesis is designed to be

an integral part of the AARTS system. AARTS and the VAMPs will play a key role in the

configuration of future Air Force embedded flight processing.

Current State of Rete. In 1979 Forgy presented his work on Rete (Forgy, 1979), and

later showed its use in an implementation for a mini-computer written in a higher order

I language (Forgy, 1982). Since then, Rete has been the subject of much discussion among

I 9I
I

I
expert systems researchers. In 1985, the Rete-based Texas Instruments--Dallas Inference

Engine (TIDIE) was developed for the Robotic Air Vehicle project by Texas Instruments,

I with extensions for advanced scheduling constructs (Lystaad, 1987). In 1987, Inference

3 Corp's Automated Reasoning Tool (ART), a commercial Rete-based expert system

development tool, was again chosen for prototyping the Pilot's Associate software (Lizza,

1988). Use and acceptance of Rete seemed widespread, and helped expert systems gain

public attention.

I Then, in 1987, Daniel Miranker published a paper challenging the efficiency of the

beta-memory nodes of the Rete net, proposing an alternative approach (Miranker, 1987).

His main contention was that "the size of beta memories may be combinatorially explosive"

3 (Miranker, 1987:6). Miranker suggested removing the beta-memory nodes, and

performing the matches explicitly at the joins. This procedure was proven less efficient by

3 Nayak, elL. (1988) when compared with Rete in four representative applications.

Various implementations of Rete are currently in use, but all have the basic

discrimination net and inference engine originally proposed by Forgy. Labhart, et al.

(1988) have moved Rete closer to a heterogeneous processing environment by

implementing the inference engine as a callable subroutine, and providing a means to

update working memory externally.

Little work has been done on the structural implementation of the discrimination net,

I i.e. how to represent a given number of rules in the smallest amount of memory possible.

This research has shown this area to be crucial to embedded flight processor applications.

Contributions. The product of this research was an Ada-based expert system shell for

flight processor applications using the Rete forward-chaining inference engine in

I CLIPS/Ada. The design of the expert system shell is suitable for flight processor

I 10
I
I

I
implementation under AARTS, and serves as a vehicle for further development and

research. The lessons learned during the implementation of the expert system shell under

AARTS have provided feedback to the avionics community concerned with advanced

software techniques and architectures for Air Force weapons systems such as the Advanced

Tactical Fighter (ATF) and projects such as the Pilot's Associate. Evaluation of the NASA

CLIPS/Ada inference engine was accomplished, and a list of problem areas will be

provided to NASA for future enhancements of CLIPS/Ada.I
Summary. While the Air Force has invested in expert systems technology to solve

complex problems in the fighter aircraft arena, two important constraints of flight software

must be investigated prior to successful implementation of expert systems on embedded

flight computers: speed of execution, and amount of memory required. Rete, an efficient

forward-chaining system, can provide an expert system suitable for such an

implementation. An evaluation of a Rete-based system written in Ada able to run under the

AARTS Operating System on the VAMPs was the goal of this research.

I
I
I
I
I
I
I 11

I

I
III. Design of the Expert System Shell

I The approach taken in this research was to tailor the Rete-based forward-chaining

CLIPS/Ada inference engine and embed it within an expert system shell suitable for

operation on a VHSIC Avionics Modular Processor. The expert system shell provides the

3 inference engine with an interface to the AARTS Operating System (AOS) services, loads

the rule base, filters incoming data, and calls the inference engine to process the new data.

I The expert system shell and AOS interfaces were developed in VAX Ada on a Digital

Equipment Corporation (DEC) VAX 11780 and tested with its AOS shell programmer

interface. This chapter presents an overview of the VAMP and AOS, and describes in

* detail the design of the expert system shell.

VAMP. The VHSIC Avionics Modular Processor is a VHSIC implementation of the MIL-

STD- 1750A Instruction Set Architecture, the standard Air Force flight processor. The

VAMPs in the Integrated Test Bed (ITB) were developed by the Westinghouse Electric

Corporation (WEC) under contract to the Avionics Laboratory ("Common Module

Systems", undated). The VAMPs contain processor, memory, and interface modules

which are plugged into and communicate over the internal PI-bus as shown in Figure 2.

The PI-bus is a dual-redundant 16-bit 12.5 MHz linear bus which supports up to 32

* modules.

Each CPU module contains four V1750A CPU chips, each with 256 K 16-bit words

of on-board memory. Up to four CPU modules may populate a VAMP "cluster" or

3 processor box. The V1750A has the ability to address up to one million words of extended

memory over the PI-bus. There are two main Bus Interface Modules (BIMs): one to the

I MIL-STD-1553B bus, and the other to the fiber optic High Speed Data Bus (HSDB). The

I 12

I

I
1553B is a twisted-pair dual-redundant coaxial 1 Mbps multiplexed daisy-chain serial bus.

The HSDB is a 50 Mbps dual-redundant fiber optic token-passing ring bus. The VAMP

I may have two separate HSDBs: the Mission Avionics Bus (MAB), for message passing

between applications tasks executing on distributed VAMPs; and the Block Transfer Bus

(BTB), for transmitting large blocks of data at high speeds.

I
HSDB BTB

V 1750A Volatile V1750A Non-Vol HSDB
CPU Bulk CPU Bulk BTB

Module Memory Module Memory BIM

3P1-Bus A Clock/
Terminator

P1-Bus B Monitor

V 1750A V1750A HSDB

CPU 1553B CPU MAB3 Module BIM Module BIM

1553B Bus HSDB MAB

I

Figure 2. The VAMP Architecture

I
AARTS Operating System. The Ada Avionics Real-Time Software Operating System is

U the VAMP's kernel operating system. The AOS is being developed under contract by

TRW Inc. for the Avionics Laboratory. Written in Ada, the AOS provides the system

services necessary to support fault-tolerant processing on a network of distributed flight

I 13

I

I
3processors. AOS services include resource management, inter-task symbolic

communication and synchronization.

I One CPU in a VAMP cluster is designated as the master executive, and it loads the

main AOS executive. The master executive supervises execution on other CPUs in the

cluster and provides graceful degradation in the event of system failure. Each of the other

CPUs executes a distributed executive, a smaller version of the AOS that supervises

execution of the application tasks on its CPU.

I The \OS executives constantly monitor the buses and the applications tasks during

operation. In the event of a CPU failure, the master executive will reconfigure the

remaining CPUs to continue the mission with the available resources. Applications tasks.

and even the master executive, may be reloaded onto a functional CPU and executed. This

provides the system with graceful degradation.

Message passing is performed by the AOS using pre-defined message formats

transmitted over the PI-bus to applications tasks on other modules. Messages to other

VAMPs are passed to the MAB BIM which transmits them over the MAB HSDB.

3I Messages to other types of avionics may be passed to the 1553B BIM which transfers them

onto the 1553B bus. Messages are addressed via symbolic address tags called Message

3 IDs (MIDs) which allow the applications to maintain communications using logical

addresses while the AOS directs the messages to their physical destination.

I Task synchronization is accomplished through the AOS EVENT services, which are

3 similar to VMS event flags. An AOS event is declared and given a state (either ON or

OFF). Multiple tasks may monitor and be triggered by the toggling of an event's status.

3 Rudimentary time services are available for timed suspension of tasks as well.

The AOS is written using the TARTAN version 3.0 VI 750A toolset. TRW delivered

I a single-CPU version to the Avionics Lab in April 1990. A multiple-CPU, single cluster

I 14
I
I

I
version of the AOS is expected in late December 1990, and the multiple cluster version in

the summer of 1991. A VAX Ada based AOS interface package called the AOS Shell was

I provided by TRW for compilation and simple debugging of flight processor application

modules and is hosted on a DEC VAX system.

Design of the Expert System Shell. The Expei, System Shell (ESShell) consists of a

small interface and control procedure, a rule loading and compiling module, a message

3 receiving and object updating module, and the forward-chaining inference engine module

as shown in Figure 3. The blocks represent modules of the ESShell, the arrows represent

objects or information passed between modules, and the SMM cylinder represents System

Mass Memory. In subsequent figures, double-walled blocks represent modules from

CLIPS or the AOS. The ESShell also defines the data objects and message formats for

the interface between AOS and the inference engine.

The goals in designing the ESShell were to develop a domain-independent shell for

I embedded expert system applications, to employ an inference engine written in Ada, to fit

3 within the memory of a single V1750A CPU, and to permit expert systems to be executed

in real time. The ESShell was designed top-down for modularity.

CLIPS/Ada. The C Language Integrated Production System (CLIPS) was created by

the Software Technology Division of NASA/Johnson Space Center with support from the

I Air Force. CLIPS is a powerful development and delivery expert system tool which

provides a complete environment for the construction of rule-based expert systems

(Giarrantano, 1989). CLIPS incorporates a Rete-based forward-chaining inference engine

3into an expert system development tool complete with rule development and debugging

capabilities. The rule syntax is based on Inference Corp's Automated Reasoning Tool

I(ART). When the DoD mandated the use of Ada for program development, an Ada version

I- 15

I
was developed for NASA by Barrios Technology (Melebeck, 1989:iii). Since CLIPS/Ada

is available at no cost to government agencies along with complete source code,

I documentation, and technical support, its inference engine was selected for this research.

3 The components of CLIPS/Ada used in the ESShell are the forward-chaining

inference engine, the rule loader and Rete net compiler, and the object modification

3 functions. The CLIPS/Ada development tool was used for rule debugging and testing.

I
ES

SHELL

Rule RulesFilenamne Mg Fied

R ETE

LOAD Net UPDATE FORWARD

CHAIN

Filenamne Rules RETE Agenda

IFile Net

Figure 3. The ESShell Modules

I LOAD Module. The knowledge of the expert system is encoded in a series of if-then

constructs called production rules. The file containing the rules is known as the rule base.

In a Rete system, the rule base is compiled into a discrimination network allowing efficient

* execution of the inference engine.

I 16

I
I

I
3 Using the AOS file services and the CLIPS/Ada rule compiler, the LOAD module

loads the rule base and compiles it into the Rete net. The CLIPS/Ada rule compiler parses

U the rules and checks the syntax of the rules as it constructs the Rete net. CLIPS working

memory elements are placed on the FACT_LIST. Errors in the rules are signalled and

those with invalid syntax are thrown out. The LOAD module is called only once during

system startup and initialization of the ESShell by the Operational Flight Program (OFP).

UPDATE Module. The ESShell was designed to operate on embedded flight

I processors, which operate in a real-time non-monotonic environment. Objects in the world

are constantly changing, and their states must be reflected in the working memory of the

expert system. The UPDATE module performs the match portion of the expert system

3 cycle, and acts as the interface between the real world and the expert system. Object

changes come to the ESShell in the form of AOS messages. The message formats are

based on pre-defined data structures agreed upon by the ES_S hell and the sender. The

messages come to the ESShell via the PI-bus from applications tasks on other CPUs or

possibly other VAMPs through the 1553B or HSDB BIMs. The AOS posts the messages

* into a data buffer and signals their presence to the ESShell.

The UPDATE module retrieves each message from the buffer and examines it for

3 changtcs. Because each change in working memory triggers activity in the Rete net, it is

desirable to minimize the number of assertions to only those which convey meaningful

I changes. For example, repeatedly asserting the aircraft's cruise altitude of 10,000 feet is

redundant since no rule would be activated. Therefore, new values are only asserted when

they have changed by some domain-dependent amount. These pre-determined amounts are

3 called filter values. Data which differs from the previously stored value by an amount

greater than the filter value is asserted. The UPDATE modules are shown in Figure 4.

I

I
I

I

UPDATE

3 . AgendaI 0 Object~'

RECEIVE FILTER

Object Agend3 ~ ~~Changes 4 ged

MODIFY

Agenda

IAgenda Fact

CLIPS
iRetract -_ssert

3 Figure 4. The UPDATE Modules

Data objects fall into two categories: statically and dynamically allocated. The majority

of the aircraft attributes, such as airspeed and altitude, are known a priori and so are their

data types (such as integer and real). Since these attributes are known, their types can be

defined and space can be reserved to represent them in static data structures. This approach

i facilitates filtering. By defining the static data objects as an Ada enumerated type, the data

structure may be traversed using the enumerated range, enhancing the domain

I independence of the filtering algorithm.

3 Dynamic data objects represent real-world entities such as targets and threats. The

type of these dynamic objects cannot be pre-defined and so must be stored in a non-static

I 18

I
I

I
data structure. Thus, a table of lists was chosen to store dynamic data objects. Each object

can be referenced through a fact pointer which is itself accessed by hashing the table. Hash

I collisions are stored in a linked list in that hash table position. The fact pointers refer to the

inference engine's working memory object that represents the dynamic object.

Changed data objects are modified by the MODIFY module, which uses the

CLIPS/Ada ASSERT and RETRACT functions. Both functions search the top level of the

Rete net for a node corresponding to the object, and then the change in the object is passed

I through the net. Objects which are modified (e.g. a higher airspeed) are changed in

working memory by first retracting the old fact, then asserting the new fact. If an object

change results in the activation or deactivation of one or more rules, the conflict set, also

called the agenda in CLIPS, is modified accordingly.

Once UPDATE has modified all changed objects in working memory, it returns to the

ESShell, which calls the forward-chaining inference engine.

FORWARD-CHAIN Module. The FORWARD-CHAIN module performs the select

and execute portions of the expert system cycle. The FORWARD-CHAIN module calls the

I CLIPS/Ada inference engine procedure as shown in Figure 5. The inference engine

examines the agenda and selects an activated rule to fire.

The RHS of the rules may modify working memory as a consequence of rule firing, in

turn passing data through the Rete net and possibly adding or removing other rules from

I the agenda via the CLIPS ASSERT and RETRACT functions. The CLIPS/Ada inference

engine supports calling user-defined functions from the RHS of a rule. A critical

conclusion reached in a rule firing may require immediate notification to another process.

To support this need, the function SEND was developed for the expert system shell to

allow the inference engine to communicate via the AOS message services. The RHS

I syntax for the message is (SEND MID &arguments). MID is the PI-bus message ID

I 19

I

I
number and &arguments is the argument list. The inference engine passes these arguments

to the function in a linked list. The interface function extracts the data from the list, builds

I the outgoing message, and calls the AOS message service to transmit the message.

I FORWARD-

CHAIN

1 Agend,, Results

I #Rules
Params RHSIInference USER

Engine IFUNCTIONS

Delete Change Arg List Msg Status

Feact

Retract RetEAsrII

Net A1S AOS

I - Msg Staus~o0

MSG

Figure 5. The FORWARD-CHAIN Modules

I VAX/AOS Shell Implementation. The design for the ESShell was initially developed and

tested on a VAX 11/780 using VAX Ada. Since both CLIPS/Ada and the AOS Shell were

programmed in VAX Ada, this design was easier to debug on a VAX using the VAX

Symbolic Debugger than it would have been on the VAMPS. The AOS Shell consists of a

set of interface specifications and test stubs to allow applications programmers to develop

I and test modular code on the VAX. Not all AOS services are implemented in the AOS

I 20
I
I

I
Shell, but MESSAGEIO, TIME, and EVENT services are, which allowed all of the

ESShel/AOS interfaces except the file I/O to be tested.

I The first step in the VAX implementation was to select the CLIPS/Ada functionsu needed to perform inferencing. Procedures were needed to load rules and compile the Rete

net, to modify working memory, and to perform the forward-chaining inference. The

RULESMANAGER.LOADRULES procedure was used to load the rules file and

compile the rules into the Rete net. The FACTMANAGER.ASSERT and RETRACT

I functions were used to modify working memory. The ENGINE.RUN procedure provided

the forward-chaining inference.

The second step in the VAX implementation was to select the AOS services needed to

accomplish message passing, task synchronization, and process analysis. The message

TRANSMIT and RECEIVE functions from the AOS MESSAGE-1O package were used

for inter-task communications. The EVENT procedures were selected for task

synchronization instead of the Ada task rendezvous mechanism, because EVENT services

allow tasks on distributed CPUs to signal each other. The AOS TIME services were used

for dynamic process analysis.

The third step in the VAX implementation was to program the ESShell design in

VAX Ada, and to integrate it with the CLIPS/Ada and AOS Shell. A small rule base v, as

used to verify the correct performance of the CLIPS/Ada inference engine in an embedded

I mode. Test driver routines were also written to examine the interaction between the

ESShell and the AOS Shell. Because the AOS Shell contained only simple testing stubs

for most services, full functional testing could not be accomplished on the VAX.

I
VAMP/AOS Implementation. It was not possible, without major modifications,to fit the

I ESShell executable code within the 256 Kwords memory on a V1750A CPU. The AOS

I 21
I
I

I
executive occupies approximately one page or 64 Kwords. In addition, four Kwords of

each code segment must be allocated for AOS use, leaving just two code segments of 60

I Kwords apiece with one 64 Kword data segment. The ESShell layout is shown in

Figure 6 with respect to the other VAMP modules.

E.Know- Application 1
ES- ledge ...
Shell Bas

Application n

CPU AOS CPU AOSI
PT-Bus

AOS AOS

I BIM BIM

I
1553B Bus HSDB MAB

Figure 6. The VAMP/AOS Module LayoutI
Summary. The VAMP architecture and AOS provide an environment that encourages

modular design of flight software. The ESShell was designed in such a fashion, drawing

3 upon the CLIPS/Ada and AOS components necessary to produce a flexible expert system

shell for flight computer applications. The initial implementation of ESShell on the VAX

11/780 using the Symbolic Debugger and AOS Shell facilitated testing and evaluation of the

expert system shell.

* 22

I
I

I
3 IV. Analysis

I This chapter contains the analysis of the expert system shell. The analysis of the

expert system shell was limited to an evaluation of the CLIPS/Ada functions it used to

perform the forward chaining inference. A theoretical analysis was performed on the

3 source code, and parameters which affect the inference engine's time and space

complexities were identified. These complexities were compared to Forgy's Rete analysis

I and tested empirically. The empirical tests were conducted using a series of benchmark

tests on a MicroVAX computer. The results of these tests are presented in Chapter Five.

Analysis of the Rete Algorithm. The original analysis of the Rete algorithm was performed

by Dr Charles Forgy in 1979. Worst and best case analyses were presented for both time

3 and space complexity of Rete. The following analysis is summarized from the reprint of Dr

Forgy's thesis entitled "On the Efficien, Implementation of Production Systems " (Forgy,

1 1982).

I Time Complexity of Rete. Dr Forgy identified two specific factors which adversely

impact the performance of the inference engine. These are an increase in the number of

3 productions and an increase in the number of working memory elements. Dr Forgy

summarized the affect of working memory on speed in this way:

I The precise relation between system size and execution speed depends on the
producticais' LHSs. The LHSs with many poorly discriminating patterns, which
cause many tokeis to be stored, can ... cause the system to run slowly. (Forgy,
1982:45)

Space Complexity of Rete. Dr Forgy stated that there were three parameters affecting

the space complexity of Rete: the number of working memory elements, the number of

I productions (rules), and the number of modifications to working memory elements, or

tokens.

I 23

I

I

The number of working memory elements affects the size of the system in two ways.

First, each working memory element requires an amount of space in the system for its

I storage. Second, some working memory elements may be stored in the net as tokens many

times in beta memory nodes as they match distinct productions which share LHS clauses.

The number of productions has an effect on system space also. Obviously, each

production requires some space in the net for the nodes to represent it. The size of the net

can be reduced if rules share LHS clauses, and requires less constant test and join nodes,

I and their associated alpha and beta memory nodes. The RHS actions of each rule must be

stored as well. As the number of rules increases, so does the size of the net.

-- The number of tokens, according to Dr Forgy, depends on the number of patterns in

each rule and "how discriminating the patterns are" (Forgy, 1982:45). The net size will

increase as the number of tokens stored in it increases.

Dr Forgy explained that ideally the size required to represent the compiled rule net

should be less than or equal to the size of the uncompiled rules. In practice, however, this

-- may be difficult to achieve. For example, the size of the compiled net in the OPS4

3implementation is up to fifty percent larger than the uncompiled rules (Forgy, 1982: 45).

The space and time complexities of Rete according to Dr Forgy's analysis are summarized

3- in Table 1.

While there are two exponential terms in the analysis, these depend on every possible

I combination of LHS clauses to be present in the rule base. In practice, this would not

usually be the case, and the number of enumerations would be much less. The

performance would, in fact be closer to linear.

I

* 24

I

3- Table 1. Summary of Forgy's Theoretical Analysis.

Best Case Worst Case

Effect of Working Memory size on number of tokens 0(1) O(WC)

Effect of Production Memory size on number of O(P) O(P)
nodes

Effect of Production Memory size on number of 0(1) O(P)
tokens

3 Effect of Working Memory size on time to fire one 0(1) O(W2C-1)
production.

Effect of Production Memory size on time to fire one 0(log 2P) O(P)-- production.

Where C is the number of patterns in a production, P is the number of productions inI production memory, and W is the number of elements in working memory (Forgy,
1982:44)

I

-5 Description of the CLIPS/Ada Functions. The theoretical analysis of the CLIPS/Ada

implementation is presented in two sections, an analysis of the time complexity, and an

analysis of the space complexity. The theoretical analysis of the CLIPS system was

performed on the CLIPS/Ada source code. Analysis tools available on the VAX were of

great assistance in checking the results of this analysis.

3 Many sections of the CLIPS source code were examined during the development of

the ESShell. ESShell used the embedded interface to the CLIPS inference engine,

utilizing several CLIPS procedures for constructing, accessing, and modifying the Rete

net. It became evident during program development that the two CLIPS routines which are

I of the most importance to the system are ASSERT and RETRACT. The inference engine

3 control loop and routines which evaluate RHS actions are largely dominated at run time by

I 25

I

ASSERT and RETRACT. It is important to understand the functionality of the CLIPS

ASSERT and RETRACT routines prior to presenting their complexities.

ASSERT. The function ASSERT takes a fact as input, which may represent either a

new object or a new instantiation of an object. Prior to assertion into the net, the new fact

is compared to each fact in the fact lists to avoid duplication. After ensuring no duplicates

exist, the fact is submitted as a string and is parsed by ASSERT to extract the elements of

the fact (such as the object name, its attributes, or value elements). The nature of these

elements is then determined, whether they are strings themselves or numbers. String

elements are hashed into a symbol table. In order to save space in the Rete net, facts stored

in the net reference symbols via pointers into the symbol table. Numbers are stored directly

in the fact.

Once the fact has been parsed, a data token representing the fact is driven through the

net. The CLIPS/Ada system separates the constant tests from fact resolutions in two

distinct nets called the pattern net and the join net. Two simple rules and their CLIPS

internal representations are shown in Figure 7.

The length of a fact being asserted into the net is compared to the length ot the patterns

at the entry points into the pattern net. For convenience, facts of length two will be referred

to as Attribute-Value (AV) pairs. Facts of length three will be referred to as Object-

Attribute-Value (OAV) triples. After a token representing a fact is passed to the correct

I entry into the pattern net, it is passed to each of the branches stemming from that entry. If

3 an element of the token passes the test at a node on a given branch, it will be passed on to

that node's successor. Tokens which pass all the way through the pattern net will have

3I satisfied an antecedent condition of at least one rule's LHS. These tokens are then passed

to the join net.

I2

II 26

I

(defrule engage-enemy-truck (defrule engage-enemy-plane
(?target ID truck) (?target ID plane)
(?target IFF foe) (?target IFF foe)
(mode engage) (mode engage)

(launch maverick)) (launch sparrow))

E-
A = modae A ' ID "=I

=V = engage truck = plane = foe

Pattern Net

Join Net

<- ?tlarget <-?target

launch maverick launch sparrow

Figure 7. Sample Rules and Net

The ASSERT function drives the token into each entry in the join net pointed to by the

successfully matched pattern net branch. The more rules whose LHSs share the antecedent

3condition, the more entries exist into the join net. In the join net, the token is bound to the

rule(s) whose antecedent condition was met. Also, LHS conditions which depend on

matching the same object are compared, and the bound tokens which provide a consistent

match on both sides of the join are passed to the next node. For example, in the sample

rule engage-enemy-truck, the pattern variable ?target will be bound to all objects with the

I 27
I
I

attributes ID and IFF. Only objects with an ID value of "truck" and IFF value of "foe" will

resolve consistently, allowing the token to pass to the next join node.

When a token passes all the way through the net to the rule's final join node, the fully

matched rule is said to be activated. Activated rules are placed on the conflict set, also

known as the agenda. CLIPS employs a fairly simple conflict resolution strategy. A rule's

3 firing priority is declared in the rule definition via a rule attribute called salience, expressed

as a numeric value from -10,000 to +10,000. Zero is the normal or default salience if none

I is explicitly declared. Prior to placing an activated rule on the agenda, ASSERT searches

the agenda list top-down until a rule with equal or lower salience is found. The newly

activated rule is placed just before that rule. Therefore, the most recently activated rule with

the highest salience is at the top of the agenda and is executed or 'fired' first.

Once a token has been passed through the net completely and any activated rules have

been added to the agenda, ASSERT returns to the calling routine. Facts are stored in a list,

and bindings in the join net are pointers into this list, again to save space in the Rete net.

In the event that a rule employs negative logic in its LHS, as in an antecedent condition

similar to (NOT (?target ID jeep)), the ASSERT function must perform some additional

tests. For each join node in the token's path, ASSERT must check a!! other bound tokens

at that node to ensure that no objects may be consistently resolved in order to satisfy the

NOT condition.

_ For example, let (target- 1 ID ground-vehicle) and (target- 1 IFF foe) exist in working

memory and the NOT condition stated above be added to the sample rule engage-enemy-

truck as shown in Figure 8. If the fact (target- l ID truck) was asserted, when the NOT join

node is reached, all bindings of target- 1 to this node, in this case the (target-1 ID ground-

vehicle) OAV triple, will be checked to ensure that (target- 1 ID jeep) is not among them.

28

i
3- (defrule engage-enemy-truck

(?target ID truck)
(NOT (?target ID jeep))
(?target IFF foe)
(mode engage)

-- (launch maverick))

*AV A

A = mode A =IDA = F

V = engage V truck V ? V = foe

Pattern Net"';n ..'.e3 Join Net

m Resolution ,

IF. ?<- ?target

I

3launch maverick

Figure 8. Sample NOT Rule and Net

3 RETRACT. The RETRACT function performs essentially the same steps as the

ASSERT, except thc token is coded as a deletion from the net instead of an addition to it.

The fact list is scanned to find the fact that is to be removed. Then all of the rule bindings

in the join net to which the fact is associated are removed. Finally, if a terminal join node

I 29

I

was bound, the rule previously activated by that node (or more specifically, the rule

deactivated by the token deletion at that node) is removed from the agenda.

Both ASSERT and RETRACT functions are similar in nature and it was assumed that

both would yield similar empirical results. The ASSERT function was chosen to

demonstrate the remainder of the analyses.

PCA. The VAX Performance Coverage Analyzer (PCA) is a tool used on DEC VMS

/AXs to examine the run-time performance of software and to assist in software test

coverage. PCA will measure for a specified period the amount of CPU time spent in a

particular routine. A histogram showing the time spent in each routine relative to other

routines in the system may bx plotted. This program was helpful in demonstratingiz the

assumption that most of the inference engine's time was spent in ASSERT and RETRACT.

During PCA analysis, RETRACT and FASTASSERT had the highest share of CPU times

among the routines called by the inference engine.

CLIPS/Ada consists of over 700 routines in highly modular Ada packages. PCA was

very helpful in narrowing the scope of the analysis by determining the specific routines

which deserved the most consideration.

Source Code Analysis. The CLIPS/Ada source code was used for the actual complexity

analysis of the system. A routine call chain was developed, showing all of the possible

c-depaths from the function FASTASSERT, which is the assert function called by the

inference engine.

CLIPS Time Complexity. The initial attempt to determine the time complexity

involved computing the time complexity of each routine called in th. usual fashion (Aho,

1974). Extensive investigation of the source code revealed over 70 possible routine calls

during a,' ",ssert, with four singly recursive routines, and two doubly recursive routine

30

U
3 pairs. While an exact time complexity specification was desired for the assert function, the

extremely complicated nature of the software precluded this during the period of this

I research, and a less rigorous approach was adopted.

3 Using the PCA statistics and some knowledge of the data structures and algorithms

involved, five basic parameters were identified as having important impacts on the overall

3 performance of an assert. The time complexity of the assert is proportional to:

- the number of facts in working memory,

3 • the relative structural complexity of the facts and the pattern net,

* the number of entries into the join net for each matched pattern,

I the number of tokens bound to the join node, and

3 • the length of the path from the entry into the join net to its terminal join node.

These parameters may be related to specific qualities of the knowledge base as follows:

3 a. Number of Facts. The number of facts will vary from expert system to expert

system, and even from run to run, depending on the contents of working memory. The

CLIPS/Ada assert function exhaustively searches the list of facts to ensure duplicate facts

3 are not asserted, resulting in possible duplicate rule activations. This is a linear operation,

and for novel facts contributes significantly to the response of the ASSERT.

3 b. Structural Complexity. The structural complexity of an object is reflected

somewhat by its fact's length. Longer facts represent objects with more discriminating

I attributes. Because the LHS patterns of rules are designed to match with objects in

working memory, the types of patterns in the antecedent clauses will resemble the objects

in structure. The pattern net is partitioned by LHS pattern length. New tokens are indexed

3 by length into these partitions when asserted. The partitioning, then, reduces the total

number of entries into the pattern net to be visited, and the execution effect of this

I

I
I

I
parameter is proportional to the number of LHS patterns of the same length to be matched,

which is a linear operation.

I c. Number of Join Net Entries. The number of entries into the join net is a

measure of how many LHS conditions share a fact pattern. During the assert, all entries

into the join net must be visited, which is a linear operation.

3 d. Number of Fact Binds. For join nodes of LHS patterns with variable

bindings or negative logic, the number of facts bound to that node is important. Each fact

3 bound to the node must be visited to determine if its resolution with the new token would

be consistent. If a resolution is consistent, the negative join fails, while the positive logic

join succeeds. If there are no consistent binds, the negative join succeeds, while the

3 positive join fails. Successful joins pass the new token to their successor nodes.

Unsuccessful joins withhold the new token from further processing on that path. Because

3 each bind must be checked at each these join nodes, the number of fact binds at each node

will affect the ASSERT function in a linear fashion.

e. Length of the Join Path. The length of the join path represents the number of

3 LHS conditions in the candidate rule. At each node in the path, a test is conducted to

resolve the new token with tokens bound on the other side of the join. Obviously, the

3 more LHS conditions in the rule, the longer the join path and therefore, the more joins

which have to be performed. This parameter will affect the system's execution

I performance in a linear fashion.

To summarize, the execution performance of the assert depends on the amount of time

spent searching the fact list for duplicate facts, plus the time spent matching against distinct

3 LHS clauses in the pattern net, plus the time spent performing consistency tests in the join

net, plus the time to activate a rule. The relationships of these parameters may be expressed

3 as the assert's time complexity as follows:

I 32
I
I

I
I

Time Complexity of the Assert = O(F + (S1*C*CL) + (S2*R*FB*RL) + (N*A))I
I where F is the number of facts in the fact list, S1 is the ratio of distinct LHS clauses to total

LHS clauses, C is the number of LHS clauses, CL is the average LHS clause length, S2 is

3 the ratio of distinct LHS clause combinations to the total number of LHS clauses, R is the

number of rules, FB is the average number of fact binds per rule that must be resolved for a

successful join, RL is the average number of LHS clauses per rule, N is the number of

3 newly activated rules, and A is the number of activated rules on the agenda.

CLIPS Space Complexity. In the space complexity analysis of CLIPS/Ada, the same

3 approach was taken as in the source code review for the time complexity. The same

parameters apply for both the positive and negative logic assert functions' space

I complexity.

5 a. Number of Facts. The facts are stored in a linked list. The linked list grows

linearly with the number of facts in working memory. Each element of a fact refers to an

3 entry in the symbol table or a numeric variable.

The symbol table is a hash table with linear linked list buckets. The table grows

I in size with the number of distinct symbols which hash into the same bucket. Efficient

hash table storage depends on bucket conflict occurring for many fewer buckets than the

total number of buckets in the table. The affect of hashing conflict should be small on the

3 space of the overall system.

b. Structural Complexity. The structural complexity of the LHS patterns is

3 reflected in the breadth and depth of the pattern net. Each distinct LHS clause requires an

entry into the pattern. Rule bases with a variety of distinct LHS patterns will compile into a

higher number of entries and therefore a broader pattern net. The length of the patterns

I 33

I
I

U
reflects the number of pattern tests to be performed in each distinct LHS pattern. More

discriminating LHS patterns result in a deeper pattern net. Both of these relationships are

I linear in nature. The representation of each pattern test as a pattern node requires space in

the pattern net for storage.

c. Number of Join Net Entries. The entries into the join net are stored in a linked

1 list located at the pattern net terminal node. The entry list varies as the number of LHS

clauses which share the object pattern. If it is assumed that the number of rules which

3 share the same pattern is typically much less than the total number of rules, then in practice

this effect should be small.

d. Number of Fact Binds. LHS clauses with variable bindings or negative logic

3 require join nodes which bind the facts which have succeeded to that level in the join net.

As the number of fact binds at each join node increases, so does the size required by the

3 net. Since succeeding tokens may be passed to multiple join nodes, each requiring space

for the binding, the space in the net required to represent a single fact may increase rapidly.

I On the average, the total number of binds will decrease toward the bottom of the join net,

* so this number will be much less than the number of facts times the number of join nodes.

e. Length of the Join Path. The join path length reflects the number of LHS

3 clauses of a rule. The join path increases linearly as the number of LHS clauses per rule

increases, creating a deeper join net which requires more space to represent the joins.

I Because typically the number of LHS clauses per rule is much less than the total number of

rules, the effect of this parameter on the size of the net should be small.

To summarize, the size response of the system depends on the space required to

3 represent the fact list, plus the space required to represent the distinct LHS pattern tests,

plus the space required to test the joining of the LHS patterns, plus the space required to

I
* 34

I
I

U
3 represent the activated rules. The relationship of these parameters may be expressed as the

assert's space complexity as follows:I
Assert Space Complexity = O(F + (Si*C*CL) + (S2*R*FB*RL) + A)

1 where F is the number of facts in the fact list, SI is the ratio of distinct LHS clauses to the

total number of LHS clauses, C is the number of LHS clauses, CL is the average number

I of tests per LHS clause, S2 is the ratio of distinct LHS clause combinations to the total

3 number of LHS clauses, R is the number of rules, FB is the number of fact bindings for

the rule, RL is the average number of LHS clauses per rule, and A is the number of

3 activated rules.

I Relevance of the CLIPS Theoretical Analysis to Rete. The analysis of the CLIPS/Ada

implementation indicates that in addition to the parameters of working memory and

production memory size, another important parameter deserves consideration. That is the

3 amount of sharing of LIS patterns among rules.

U CLIPS Empirical Analysis. The empirical analysis of the CLIPS system was performed

using a set of expert system benchmark tests on a MicroVAX computer. The results of this

analysis are discussed in Chapter 5.

3 AIT Benchmarks. The makeup of a knowledge base is specific to the problem domain

and solution method which it represents. The structural complexity of the working

* memory elements and rules may have a large impact on the performance of the inference

engine. In order to test the relationship of the above parameters to the assert function's

I 35
I
I.

U
performance, some generic tests were needed. The AIT expert system benchmarks address

this need.

I These benchmarks were developed by Artificial Intelligence Technologies, Inc. (AIT)

under contract to the McDonnell Douglas Space Systems Company (MDSSC) to support

MDSSC's Independent Research and Development research project entitled Real-Time

3 Artificial Intelligence Support Systems in Ada (Knackstedt, 1990:7). The benchmarks test

various parameters, including average time to assert and retract facts, and the sensitivity of

3 the inference engine to the number of facts in working memory. The test set as a whole

provides a capability to either compare the performance of different inference engines

running on the same platform, or to compare the performance of various platforms running

3 the same inference engine (Knackstedt, 1990:10).

The latter comparison is useful to future research, as the same tests may be used to

3 compare the performance of the CLIPS/Ada inference engine on the VAMPs to that of the

VAX. This comparison will be useful in predicting an expert system's performance on the

I VAMPs.

3 The AIT benchmarks generally provide a "snapshot" of the inference engine's

performance under specific constraints. A series of tests was necessary to provide enough

3 data to reasonably measure each parameter's contribution to system response. The AIT

tests chosen were Test 1-2, which tests the average time per single assert and retract;

U Test 5-1, which measures the assert performance when LHS clauses share a pattern; and

Test 8-1, which measures the assert response to ten rules with NOT conditions.

The AIT tests were modified to examine these parameters in more detail. Test ranges

3 were extended far past the expected values for typical applications in order to examine their

nature. Test 1-2 was extended to test the assert and retract functions' performances over a

3 working memory which ranged in size from 1,000 to 10,000 instantiations of a single

* 36

I
I

U
3 object. This test was named 1-2a. The test was also extended to examine response to

1,000 to 10,000 distinct objects. The distinct objects were created by an assert rule

I running at a higher salience than the retract rule. This assert rule makes use of the

CLIPS/Ada GENSYM function to generate new object names. GENSYM concatenates an

incremented symbol count to the string "gen" (e.g. successive calls to GENSYM might

3 produce genl, gen2, gen3,...). This operation is of constant time complexity, and its

invocation adds only a constant factor to the assert's overall time response. This second

3 test was named 1-2b.

AIT Test 8-1 examines the assert function's performance when ten rules with NOT

conditions are compiled into the net. In order to examine the function's response over a

range of rule quantities, the test was modified for 1,000 to 10,000 facts in working

memory with 10 binds at the negative joins. Again, a rule with higher salience was used

3 to generate the facts. This test was named 8-1a.

AIT Test 5-1 shows the assert function's response to 200 facts which bind to a pattern

in a rule's LHSs. To examine assert's response over a range of rule quantities, the test was

3 modified to compile from 10 to 120 rules with a shared fact pattern. This test series was

named 5-1alO through 5-1a120.

3 The AIT tests were useful in measuring the space complexity of the CLIPS system as

well. Test 5-1 was used to measure the affect of increasing working memory size and the

I number of shared LHS patterns. The test was performed by loading the test rules, running

the test case, then measuring the amount of memory allocated to the CLIPS system. Test

5-lal0 was run with a range of 0 to 6,000 facts in working memory. The zero fact case

3 was measured when the rules had been compiled into the net, but no facts had yet been

asserted.

I
I 37

I
I

U
3 Tests 5-1a10 through 5-1a200 were used to show the affect of incr,.asing the number

of rules sharing LHS patterns from 10 to 200 rules. The number of facts in working

I memory was held constant at 400 due to memory limitations. A zero fact case was also

* measured to show the size of the network with no facts yet asserted.

Testing Conditions. The tests used CLIPS/Ada version 4.3 compiled with VAX Ada

3 version 2.0. The tests were run on a DEC MicroVAX 3900 series computer, under the

VAX VMS operating system version 5.3.

To facilitate measurement of the CLIPS functions on both the development and target

computers, a suitable method for measuring performance on both the VAX and VAMP

computers was desired. The VAX VMS operating system has many built-in methods for

determining program performance (including VAX PCA), but these methods are intrinsic to

VMS and would be difficult to duplicate on the VAMPs under the AOS.

5 AOS does provide a simple means of measuring time which makes use of the

computer's system clock. The AOS TIME services include a routine which returns the

value of the system clock. By inserting calls to this service at the entry and exit points of a

3 routine, the amount of system time spent in a routine may be measured. Subtracting the

entry time from the exit time yields this execution duration. Three sets of variables--time,

3 duration, and invocation count--were created to store the results of the ASSERT,

RETRACT and inference engine routine calls. The entry and exit times are stored in the

I time variables and their difference is stored in the duration variable. A count of the

routine's invocations was incremented after the routine exit time was taken. The average

time per invocation was obtained by dividing the duration by the invocation count. The

3 smallest system clock period reported on the VAX is 10 ms, so it was necessary to invoke

the routines at least 100 times to obtain a reasonable sample. This method was simple and

3
I 38

I
I

I
3 had the advantage of being portable to any platform which supports the AOS TIME

services.

I To minimize the intrusion on the CLIPS routines, a separate data reporting function

was created. Only the data entry and exit time readings, and invocation count incrementing

statements were actually inserted into the routines being measured. The data reporting

3 function was designed su as to be callable from an external Ada routine, or from the RHS

of a CLIPS rule.

Testing Controls. An inherent problem with this measurement method lies in the use

of the system clock rather than measuring the CPU time actually spent executing the

routine. The routine's duration, as measured against the system clock, may be skewed by

the scheduling of tasks, time slicii,,, program priority, input and output, and virtual

memory management.

3 On the VAMPs these effects are of smaller concern because the VAMPs have no

virtual memory to manage, and it is simple to assure that only one task is running on the

CPU and no input or output takes place. The MicroVAX, however, is a multi-user, multi-

3 process, virtual memory computer.

To reduce the adverse impact of other processes, the MicroVAX was run with

3 interactive logins disabled, creating a single-user computer. To minimize system process

and task scheduling impacts, the test set was the only user process run, and all non-

I essential system processes (such as network functions) were disabled. Some overhead

was incurred by the use of virtual memory, but with the physical and virtual memory limits

held constant, the additional processing required for the use of virtual memory was

3 monitored and taken into account.

To minimize the effect of memory allocation on the test measurements, knowledge of

I CLIPS' internal memory management was used. CLIPS requests memory in blocks from

I 39

I
I

U
the operating system as needed and allocates portions of this memory to internal routines on

demand. CLIPS will not release memory to the operating system unless explicitly

I commanded. For each test series, a control run with the test case was performed in order

to allocate enough memory for the test. The performance statistics were cleared and ten

more runs were performed. The measurements taken on these ten runs were averaged to

show the time per routine invocation over the entire test. During space complexity

measurements it was noted that the size of CLIPS memory grew slightly during each run of

I the same test case. This growth was attributed to the accumulation of garbage memory as

a result of the inference process, and was ignored because the rate of memory growth per

test did not contribute greatly to the overall size of program memory.

Another problem occurred due to test case range selection. Tests with up to 10,000

facts or more than 100 rules sharing LHS patterns required amounts of memory which

3 often exceeded the amount of physical and virtual memory available on the system.

Exceeding memory limits resulted in process termination. Processes were limited to

approximately 4 Mb of physical and 10 Mb of virtual memory. Some tests hi" to be scaled

3 down to allow consistent data collection.

During some test cases it was difficult to vary only one parameter while holding all

3 others constant. In these tests, the effects of other parameters were kept to a minimum, and

taken into consideration in the analysis of the results. For example, Test 5-lalO-200

I measures performance in response to the number of rules sharing LHS conditions. During

the test series, more rules are introduced which share LHS conditions, increasing both the

number of rules and the amount of sharing. To minimize the effect of more rules being

3 introduced, the rules were made identical except for the names, requiring a minimum of

pattern and join nodes, increasing only the number of terminal nodes in the join net.

I
I 40

I
I

I
The CLIPS function MEM-USED displays the number of bytes allocated by the

CLIPS system. This function was used during the space complexity testing. The output of

I this function is not affected by other user processes or by the use of virtual memory. As

was mentioned earlier, some garbage memory was accumulated as a result of the inference

process, but this number was less than five percent of the total amount of memory allocated

in each case, and so was ignored for test purposes.

I iSummar. The complexity of the CLIPS/Ada assert function is affected by five important

parameters: the number of facts in working memory, the structural complexity of the facts

and LHS patterns, the number of entries into the join net, the length of the join path, and

for negative logic asserts, the number of facts bound at the join node. The AIT benchmark

tests provided a framework for empirical analysis. These tests were extended to examine

I the assert's parameters in detail. The assert function's execution and size performances

were bounded linearly for the tests conducted. This performance can be used as an

indicator for embedded applications given the proper information about the knowledge

* base.

I
I
I
I
I
I 41

I
I

I
V. Results

-- The results of the tests supporting the empirical analysis are presented in this chapter.

Each test is described and its results discussed relative to the performance of the expert

system shell. The impact of the results on the embedded application is presented, along

with the results of running the PES on the expert system shell.

_ Time Complexity. In the time complexity tests, the response of the system, in terms of

execution speed, was measured against varying parameters. The parameters used were the

size of working memory, the use of negative logic in the LHS, and the number of rules

sharing a LHS pattern.

Number of Instantiations. In Test 1-2a, the performances of the assert, retract, and

_ inference engine were measured against varying the number of object instantiations in

working memory. An instantiation in this case was an AV pair with tht same object name,

but a different value. The number of instantiations of a single object ranged from 1,000 to

10,000 for the test series. The performance of the system in Test 1-2a is shown in

Figure 9.

The performance of all three functions is shown in milliseconds (ms) per action versus

the number of instantiations in working memory. Clearly, the performances of all three

I functions are linear in nature. Because the rules of this test employed a single retract for

every assert, it is evident the performance of the inference engine is dominated by the

retract in this test.

Number of Objects. In Test 1-2b, the performances of the assert, retract, and

inference engine were measured against the number of objects in working memory. In this

I case, objects were AV pairs with distinct object names. The number of objects for the test

-- 42

series ranged from 1,0(X) to 10,000. The performance of the system for Test 1-2b is

shown in Figure 10.

ms
140 I I I I .

X

10 - -eFires /

1 20 --- -Asserts .

- , -Retracts /
1 0 0

I /

80-,<• .

40-

¢,

20 /

0- ' - jr--i----f I- 1-- --- r x oo
01 LI-.x 1000

0 2 4 6 8 10 12
Facts

Figure 9. Test 1-2a with 1,000 - 10,000 Fact Instantiations

The performance of the system is similar to that of Test 1-2a. All three functions

exhibit linear performance. As expected, the assert function's performance is offset by the

use of the GENSYM function, which generated the distinct object names. The offset is

3 evident when comparing the performances of the asserts from the two tests, shown in

Figure 11. The object instantiation assert curve has a steeper slope, however, indicating

3 additional processing taking place.

4

-- 43

Ms

I -140. - I

1201 -I-Asr
1 0 0

100 --------
/I 8 0 t

X6 0
0-

60 ""

40 x 00

0 2 4 6 8 10 12

Objects

Figure 10. Test 1-2b with 1,000 - 10,000 Objects

m~s

SU. I II

. o b~ e s .. .1 -

4.5

3 .5

2--1 1 c ioo
0 2 4 6 8 10 12

Instantiations

Figure 11. Assert Performance: Objects vs. Facts

44

I

3 Negative Logic Assert. In Test 8-la, the performance of the assert function was

measured against varying working memory size when a NOT condition was placed in a

LHS pattern. Ten facts were bound to each NOT node prior to system start. The number

3 of objects in working memory ranged from 1,000 to 10,000 objects. A comparison of the

negative and positive logic asserts is found in Figure 12.I
30 I ! I I I

35 [PLogc ssertsI -El -N Logic Asserts

30 . ..

i 25 F

20

15

5

°0I I I I I 1000
0 2 4 6 6 10 12

Facts

Figure 12. Positive vs. Negative Logic AssertsI
The performance of the negative logic assert is linear in nature. The number of binds

Uat each NOT node was constant for each test and so the assert function performed the same

3 number of join bind resolution tests on each run. The steeper slope of the negative logic

assert curve graphically shows that varying the number of negative join node binds

I
I 45

I
I

I

3 decreases the performance of the assert by requiring additional processing resulting in a

larger coefficient for the linear term.

I Number of Entries into Join Net. Test 5-1a measures the performance of the assert

against varying the number of rules whose LHSs share an object pattern. Four hundred

facts were asserted into memory for each test. The number of rules sharing LHS patterns

varied from 10 to 120 rules. The performance of the assert is shown in Figure 13.

I
ms

40 4 I
o srtsi

35

30I30 . "
2 5 ,

< 20

10

0 Rules

0 20 40 60 80 100 120 140

Rules

IFigure 13. Test 5-1a Rules Sharing LHS Patterns

I
The performance of the assert is linear in nature. Since the number of facts and the

number of distinct LHS clauses were held constant during the test, the linear response is

attributed to the additional processing necessary to store the binds at the join nodes sharing

Hthe patterns.

1 46
I
I

I
I

Worst Case Time Complexity. The worst case time complexity of the assert routine

I occurred in Test 5-1a. The response in this case was influenced by the additional

processing required to store the binds at the join nodes. This response corresponds to the

number of rules sharing a LHS pattern. This response was still linear in nature.I
Space Complexity. In the space complexity tests, the response of the system, in terms of

I system memory size, was measured against three parameters: the number of objects in

working memory , the number of rules, and the number of rules sharing LHS patterns. All

three comparisons were accomplished using the Test 5-1 a with different values for the

3 parameter of interest.

Number of Objects. The system was run with ten rules compiled into the net. The

3 number of objects ranged from 0 to 6,000. The zero object case shows the size of the

system with only the ten rules compiled which share an LHS pattern. The response of the

system to this test is shown in Figure 14.

The size of the system is shown in bytes, against the number of objects in working

memory. The response of the system is linear in nature. Since the slope of the line is very

3steep (920 bytes per fact), clearly the number of objects in working memory has an

important impact on the system size.

INumber of Rules. The performance of the system, in terms of size, was measured

3 against the number of rules compiled into the net. The zero rule case shows the system's

base size of 3150 bytes. The zero object case represents the size of the system with the

3 rules compiled into the net. The number of rules ranged from 10 to 100. Each rule

contained two LHS clauses and one RHS clause of length five. All rules shared one LHS

Ipattern. The response of the system to this test is shown in Figure 15.

I 47

I
I

bytes

6.000 1 (PI

I3500010
1.4000 10

00

9 0 0 100 200 30 00 00 600 70

2.000

1.000 10

0 1000 300 40 00 00 70

Figure 1. System Space wit 1n -10 Rules mie

3 byt48

I
3 The size of the system is shown in bytes, measured against the number of rules

compiled into the net. The response of the system to increasing the number of rules is

I linear in nature. "Ibe slope of the line is steep (197 bytes per rule); clearly the number of

rules also has an important impact on the system size.

Number of Join Net Entries. The performance of the system, in terms of size, was

measured against the number of entries into the join net. The number of entries into the

join net ranged as the number of rules sharing a LHS pattern--from 10 to 200 rules. Each

3 rule contained two LHS clauses and one RHS clause of length five. All rules shared one

LHS pattern. Only 400 facts were asserted for each case due to memory limitations. The

response of the system to this test is shown in Figure 16.

I
i bytes

7.000 106 I I I I

6.000 106 Size

5.000 106

I0Io 4.000 106

U) 3.000 106

2.000 106

I 1.000 106

0 I I
0 50 100 150 200 250

Rules

Figure 16. System Space with 400 facts and 10 - 200 Rules Sharing LHS Patterns

4
I 49

I
I

I
3 The response of the system is shown in bytes measured against the number of rules

sharing a LHS pattern. The response of the system is linear in nature to varying this

I parameter. The curve is steep (32,197 bytes per rule, each storing 400 tokens). The

number of rules sharing a LHS pattern is clearly important to the size response of the

system.

Worst Case Space Complexity. The worst case size response of the system to these

tests was linear in nature. While the nature of this response may seem encouraging, the

slope of the response indicates that knowledge bases may easily exceed the finite memory

of a flight computer.

3 Impact on System Response. Out of the parameters selected for test, the number of entries

into the join net showed the highest impact overall. Both the execution and size responses

3 involving this parameter were linear in nature, but had larger slopes than the other

parameters tested. It is important to note, however, that even an average size knowledge

I base requires huge amounts of memory to compile and run.

3 Knowing the complexities of a particular inference engine implementation, and the

parameters for a particular knowledge base, a good prediction of average system

3 performance may be made. This prediction would require both an exact complexity

specification of the inferencc engine and a thorough analysis of the knowledge base.I
Implications for Embedded Processing. For operation on the VAMPs, the results are

mixed. The execution response of the functions are bounded linearly. The response of the

3 assert is within that of a typical avionics control application (Blair, 1990). The prediction

of the system's execution all the way through an inference chain, however, would require

I
I 50

I
I

I
more testing with the specific knowledge base in order to guarantee a solution response

time for a particular problem.

I Unfortunately, the size response of the functions indicates a problem for processing on

the VAMP. The slope of the space response curves indicate that CLIPS is unsuitable for

the execution of even small knowledge bases since the VAMPs have only 64 Kwords of

3 RAM. This response indicates that larger, more complicated problems requiring similarly

complicated inferencing could not be run on the VAMPs. These knowledge bases would

I simply not have enough room to run. It may be possible to partition the knowledge base

contextually and use only that portion required at a given point during execution to reduce

the size of the net. With an exact specification of the space complexity of the inference

engine, and a detailed analysis of the knowledge base, recommendations could made be as

to the size of the knowledge base that would fit within memory, and the average number of

3 asserts or bindings possible before exceeding memory limitations.

I An Average Case. For the RAV PES, a subset of rules representing instrument takeoff

procedures was rehosted in CLIPS format and run. The relatively small subset consists of

20 rules--less than twelve percent of the total rules in the PES rule base (Shakely,

3 1987:61). There were sixty-five objects in the knowledge base. This system required

12,594 bytes to represent the objects, 35,189 bytes to represent the rules alone, and 7,480

I bytes for the fact bindings at system initialization. The total size of 55,263 bytes takes over

one-third of the available data space on the VAMPs.

The size of the compiled net representing the rules themselves is 5.28 times larger than

3 the size of the uncompiled rules. This is much larger than the ratio of 1.5 measured by

Forgy for OPS4. If this ratio holds over the entire rule base it would take 448,758 bytes to

I

I
I

I
represent all of the PES rules. This is over three times more space than one data segment

on the VAMP contains.

I Since fact bindings are pointers stored in a link list at the join nodes, we may assume it

takes at least eight bytes to represent a fact bind in the net on the VAX. This means the 20

rules in the TAKEOFFS rule base contain 935 bindings to the 65 facts at initialization or

46.75 fact bindings per rule. If this ratio holds for the entire rule base there would be

8,275 bindings requiring 66,198 bytes at system initialization. This number can only be

3 expected to increase during system execution.

The execution response of the TAKEOFFS knowledge base running under the

ESShell on the MicroVAX was 41.5 ms per rule fire after seventy rules fired. The rule

3 fires consisted of 196 asserts averaging 18.7 ms per assert, and 75 retracts averaging 3.29

ms per retract. The TAKEOFFS knowledge base has a variety of fact and LHS pattern

3 lengths, and number of LHS clauses per rule. If this knowledge base is considered typical

for an avionics control application, its response can be considered an average case for

I CLIPS/Ada when compared to the benchmarks test results.

Summary. The results indicate that the CLIPS/Ada inference engine may be fast enough to

3 run a typical application on the VAMP embedded flight processor. If the complexity of the

knowledge base in use is known, a prediction of the real-time performance can be made.

I The space required by CLIPS for the discrimination net, however, is too large to fit on a

VAMP flight processor, even for an average size application.

I
I
I 52

I
I

VI. Conclusions and Recommendations

The main conclusion that can be reached from the results of the theoretical and

empirical analyses of CLIPS/Ada is that this implementation of Rete can be run in real time.

The definition of real time in this research is to accomplish a task (i.e. solving a problem) in

a specified amount of time. With the complexity parameters presented in Chapter Four, a

knowledge base may be analyzed and solution times predicted. A major problem in this

regard, however, is that hard requirements for solution times in many airborne problems

are not known, or not specified in the general literature. The worst case time complexity of

the ASSERT function of the CLIPS implementation was linear for the parameters tested.

But, if this complexity and some information about the specific knowledge base to be used

are known, the performance of the ASSERT may be predicted. With some additional

research the performance of the overall system may be predicted as well.

The space complexity of the CLIPS/Ada implementation of Rete does, however,

preclude it from serious consideration for operation on the VAMPs. While the worst case

space complexity is linear in nature for the tests conducted, the slope of the response is so

steep that even a small knowledge base requires more memory than is available on current

flight processors.

An exact theoretical analysis of CLIPS/Ada was difficult due to the complicated nature

of the software. The ASSERT function alone has seventy possible routines in its call

chain, including four singly recursive routines, and two double recursive routine pairs.

The parameters which affect the time and space complexities of CLIPS/Ada ASSERT

function were found. Empirical analysis was performed using these parameters that

demonstrated their r-lationship to system response.

53

I

The internal memory management of CLIPS/Ada mechanism required fewer operating

system calls for memory allocation. This internal management should increase overall

I performance of the system.

During the development of ESShell, the embedded expert system shell, it became

evident that for an embedded non-monotonic environment, the inference engine must allow

external routines to access and modify working memory elements. The CLIPS/Ada

implementation's shortcomings in this area forced an arbitrary partitioning of working

I memory into elements maintained internally and elements maintained externally. Internal

i manipulation of designated externally maintained objects is allowed by the inference

engine, but if this takes place, unexpected results may occur. Under version 4.3 of

CLIPS/Ada, the designation of object maintenance is left to the application programmer

who must rely on self-discipline to enforce the partitioning. Programmer enforcement is

Iclearly undesirable in an embedded environment, so a better means of controlling access to

CLIPS facts must be found.

The AOS treatment of data caused some problems in the ESShell development as

well. Due to data security considerations, the AOS does not allow sharing of data

structures among tasks in separate logical address spaces. To increase system

performance, allocating the update and inferencing tasks to separate CPUs is desirable.

This allocation is not possible, because both tasks would require direct access to the Rete

I net. Access to the net would have to be performed via AOS MESSAGE services. The

additional overhead of implementing access with message passing could potentially

decrease system performance.

CLIPS/Ada uses Ada exceptions for error handling and reporting. With more than

700 routines in the system, some economizing took place where a single exception handler

I may service ten to fifteen routines. Exceptions propagated up several levels may lose

I54

I

I
meaning at the level handled. For example, during an assert, trying to de-reference a null

access object raised a CONSTRAINTERROR exception at the level where it occurred.

I The exception handler was several levels up, however, and it reported "assert is not a valid

* function." This error message is not only misleading, but incorrect. This kind of

exception reporting slowed the development effort.

The state of AOS software and VAMP hardware development made transition of the

ESShell to the target environment impossible during the period of research. The VAMPs

I are Advanced Development Machines (ADMs), and were often at the manufacturer for

repair and upgrade. The memory model limitations of the version of AOS available during

this research, and slips in delivery of the next version were also major roadblocks in the

transition.

The performance of the development model of the ESShell, however, demonstrates

3 that an expert system running in Ada can be embedded in a large complex system involving

heterogeneous problem solving techniques. The ESShell complements the OFP design,

and can be used as an integral part of the avionic architecture in the ITB.

3 The use of a development methodology was helpful in moving the expert system from

design to delivery. The methodology uses van de Goor's hierarchy of design levels for

3I hardware--architecture, implementation, and realization (van de Goor, 1989:4-7). The

VAMPs are a good example of this hierarchy in practice for hardware design. As shown in

I Figure 17, the design and development of an expert system for real-time embedded

application may follow the same hierarchy.

In expert systems development, architecture design usually takes place during rapid

3 prototyping. The output of the rapid prototype is a system behavior specification, that is

the knowledge base and its interfaces to other entities in the system. During

I implementation design, the expert system is developed further as well as interfaces to the

*55

mm

system hardware and software. The output of this phase is a specification for the real-time

behavior of the system. In the realization phase, the software is developed which will run

on the actual real-time embedded system. This is similar to the WEC ADM realization of

the VAMP implementation in hardware. The use of a software development model such as

this is essential in the development of an expert system which will be run in a real-time

embedded environment.

1750A ISA VAMP WEC ADM

RAV ESShell OFP Application

Figure 17. Real-time Expert System Development Model

A potential problem uncovered in the implementation of the ESShell is that

CLIPS/Ada has no provision for modifying a fact in place in working memory. A

modification of a fact involves first retracting the old fact, then asserting the new fact. This

procedure destroys and recreates data structures which are reusable. In addition, the retract

and assert operations may make changes to the agenda. The retract and assert operations

may potentially deactivate, then reactivate the same rule in turn. This would degrade the

overall system performance in a non-monotonic environment.

Overall, it appears that Rete is a good choice for the PES application. The execution

performance of the PES TAKEOFFS knowledge base falls well within the bounds of

CLIPSiAda's worst case performance. If the PES is considered a typical avionics control

application, then Rete may be useful in other control applications as well.

56

Recommendations. Using the parameters for system performance specified in

Chapter Four, a capability for analyzing knowledge base complexity yielding predictions

for real-time performance should be developed. Further theoretical analysis of the specific

Rete implementation is necessary, however for an accurate performance prediction.

Because of CLIPS/Ada's space complexity, M1L-STD-1750A embedded flight

processor application is unlikely. Development of a context-switchable Rete net for

embedded use could alleviate space problems on the target computer. Further research

,nust be conducted into data consistency and context resolution for this approach to be

successful. Development of such a capability has potential for execution performance

payoffs as well, since the Rete subnet in context would likely have less entries into its join

net.

3 Porgy stated that for the ideal implementation of Rete the amount of space necessary to

store the compiled rule net would be less than or equal to the size of the uncompiled rule

base (Forgy, 1982:45). Implementation of Forgy's network representation that approaches

this ratio needs to be accomplished. It is unclear whether CLIPS/Ada could be modified to

take advantage of this representation.

A production-quality inference engine should be developed with the size and speed

requirements of embedded flight processing in mind. The inference engine should at least

use a knowledge representation consistent with the other levels of design. A consistent rule

syntax would allow the knowledge base to flow between the three design levels. A

consistent syntax would also facilitate maintenance and debugging of the knowledge base

on the prototyping or development platforms with their suite of development and analysis

tools.

57

Until a production-quality inference engine is available, testing should continue with

the ESShell utilizing CLIPS/Ada. When a version of the AOS is released with less strict

memory model limitations, development of ESShell should continue toward VAMP

integration. Small expert systems could then be tested in the ITB within a true avionics

architecture.

In the development of the ES Shell, many parts of CLIPS/Ada were examined and

evaluated for possible elimination from the embedded implementation. One such part is the

rule loading and Rete net compilation procedure. Rule base compilation in an embedded

environment should take place prior to run time, in order to save time and space. Loading a

compiled network into memory on demand should be much faster than loading the rule file.

parsing the rules, and compiling the rules into the network. The space for the loader,

parser, and compiler code could be saved. If the structure of the net approaches Forgy's

3ideal implementation, then storage of the net instead of the rule base could also yield a

space savings. Use of pre-compiled nets would make the net context switching procedure

Imore efficient as well.

Additional research should be performed to determine the feasibility of truly

modifying, rather than retracting and asserting facts. This capability would have payoffs in

3 both time and space.

Finally, a problem which made reporting of the empirical analysis of the inference

engine's performance difficult was the lack of a set of standard metrics for measuring

expert system performance. Specifying performance in terms of rules per second, or

milliseconds per rule, is useful only when referring to a specific expert system running on a

specific platform. Research should be conducted to develop a standard set of metrics to

discriminate among performance reports.

I 58,.

I
Appendix A. Technical Terms and Abbreviations

I 1553B MIL-STD-1553B. The standard Air Force digital serial
communications bus for use with avionic flight computers.

3 AARTS Ada Avionics Real-Time Software. The project to develop
an Ada based kernel operating system for the VAMP flight
processors (Benning, 1988).

AOS AARTS Operating System. The collection of AARTS
operating services available to a VAMP application program3 (Nichols, 1987).

ART Automated Reasoning Tool. An expert system development
environment by the Inference Corporation.

AV Attribute-Value pairs. Fcts with two elements representing
the attribute name and its value of some (implicit) object.

I BIM Bus Interface Module. The VAMP module providing an
interface between the PI-bus and an external bus.

3 BTB Block Transfer Bus. The data bus in the avionics
architecture designated for the high speed inter-processor
transfer of large blocks of data.

CLIPS/Ada The C Language Integrated Production System, implemented
in Ada. A forward chaining expert system development5system based on Rete (Melebeck, 1989a).

ESShell The expert system shell designed for use on the VAMPs
developed during this research.

HSDB High Speed Data Bus. The fiber-optic high speed data bus
developed to support inter-processor communications for the
VAMPs (Common Module Systems, undated).

ITB Integrated Test Bed. The integrated avionics testing facility
of the Avionics Laboratory which contains a real-time man-
in-the-loop aircraft simulation.

Join Net The portion of the CLIPS discrimination network where
pattern matches are joined together to activate a rule. This
corresponds to the implicit "and" between LHS clauses of a
rule.

I Knowledge Base The collection of rules and objects required to operate an
expert system.

I 59
I
I

I

ILHS Left Hand Side. The antecedent or "if" part of an if-then
rule.

LPU Logical Processing Unit. The AOS designation for a
collection of routines operate in the same logical address
space on the VAMPs (Nichols, 1987).

MAB Mission Avionics Bus. The data bus in the avionics
architecture designated for inter-process message

* communication.

MID Message Identification. The message identification number
which the AARTS Operating System uses to route inter-task
messages.

OAV Object-Attribute-Value triple. Facts with three elements
representing the name, attribute, and its value of some
(explicit) object.

Pattern Net The portion of the CLIPS discrimination net where incoming
facts are matched against the constant tests of the LHS
clauses of the compiled rule base.

PCA VAX Performance and Coverage Analyzer. The VAX tool
for analyzing software test coverage and program
performance on a VMS VAX.

I PES Piloting Expert System. The aircraft piloting expert system
knowledge base from the Robotic Air Vehicle project.

I PI-bus Processor Internal Bus. The intra-processor bus for
communications between modules within the VAMP
(Common Module Systems, undated).

RAV Robotic Air Vehicle. A project to develop a system of
distributed cooperating expert systems for control of an
autonomous air vehicle (McNulty, 1987).

Rete The pattern matching system consisting of a rule compiler
and forward chaining inference engine developed by
Dr Charles Forgy (Forgy, 1987).

RHS Right Hand Side. The consequent or "then" clause of an if-3 then rule.

Rule Base The collection of rules containing the expertise of an expert
I system.

I 60
I
I

I

SMM System Mass Memory. A file-structured device on the High

Speed Data Bus for the storage and retrieval of system files.
TIDIE

TI Dallas Inference Engine. The inference engine and
knowledge representation system used on the Robotic Air
Vehicle project (Lystaad, 1987).

3 V1750A The VHSIC realization of the MIL-STD- 1750A Instruction
Set Architecture.

VAMP VHSIC Avionic Modular Processor. The VHSICimplementation of the MLL-STD-1750A Instruction Set
Architecture.

3 Working Memory The "scratch pad" memory of the inference engine,
containing objects and temporary bindings.

I
I
I
I
I
I

I

I

I 61

I
I

U
Appendix B. An Introduction to Production Systems and the Rete Algorithm

-- (Fanning, 1988)U
Although Artificial Intelligence (Al) encompasses many fields, including speech and

3 vision processing, natural language understanding, and robotics, the general public's main

exposure to Al has been through expert systems. Production systems, a particular type of

I expert system, are used in a variety of problem areas, such as fault diagnosis, autonomous

3 vehicle navigation, route planning, and medical diagnosis. These systems are unique in that

they are dealing with problems that:I
a) require symbolic reasoning, rather than numerical computation,

I b) require the use of heuristics, i.e. rules of thumb or default strategies,

c) require solutions based on uncertain or incomplete information,

d) require domain specific knowledge. (Prerau, 1985:27-28)I
Problems with these characteristics have proven too computationally intensive and/or

3 combinatorially explosive to be solved by traditional algorithmic methods. However,

production systems, which were originally conceived by the mathematician Emil Post as a

Igeneral computational model, (Valdez-Perez, 1986:32) work very successfully with these

* kinds of problems.

Production systems use a set of domain knowledge encoded rules to reason about the

problem symbolically and to find a path from the initial state to a goal state. Prodction

systems consist of a knowledge base and an inference engine. The knowledge base

I contains facts, which represent the current problem state stored in a "working" memory;

and rules, which are IF-THEN structures representing the actions to be taken at specific

problem states to achieve a goal state. The inference engine is a rule interpreter that

I 62
I
I

U
3 matches the IF part of the rules against the current problem state, and executes the THEN

part of a matching rule. When more than one rule fits the current problem state, the

I inference engine uses a conflict resolution strategy to determine which rule or what order of

1 rules to execute.

Some production systems use probabilistic methods to determine rule application

3 when the current representation of the problem in working memory is either uncertain or

incompletely defined. The knowledge base is constructed from problem domain-specific

I knowledge, modeled after the way in which a human expert solves problems, hence the

name "Expert Systems." The process of acquiring the domain knowledge, developing the

appropnate representation, and constructing the knowledge base is called Knowledge

3 Engineering.

3 The Knowledge Base The knowledge base is composed of two parts, the fact base and the

rules base. Each of these components is described below.

The Fact Base. In the problem space, an object of concern may have attributes such as

5 color, size, or location. In the knowledge base, the values of these attributes are

represented as facts, expressing assertions about properties, relations, and propositions, in

3the problem space. (Hayes-Roth, 1985:924)

Facts in the knowledge base are usually static, that is, they describe the problem state

I at a given time. Dynamic facts represent time-varying values and are placed in a "scratch

pad" area of RAM called the working memory. The representation of the problem state in

working memory is crucial to the efficient execution of the production system.

3 Considerable care should be taken to devise a representation that is both understandable and

easy to use. Early production systems represented facts as LISP lists, because LISP was

I designed to provide many functions for manipulating lists. (Valdez-Perez, 1986:31)

I 63

I

U
3 The Rule Base. The rule base is a collection of production rules. Each rule embodies

a piece of problem domain knowledge concerning actions to be taken in specific problem

I states. Rules are most often written in an IF-THEN format, which is close to the human

expert's natural way of solving problems. Figure 18 shows a production rule from a

well-known production system example (Winston and Horn, 1984:27 1) for identifying

3 animals.

U (RULE IDENTIFY16

3 (IF ((> ANIMAL IS A (> TYPE)) ;LHS
((ANIMAL IS A PARENT OF (> CHILD)))

I (THEN ((CHILD IS A (<TYPE)))) ;RHS

I
Figure 18. A Simple Inheritance RuleI

In production rules, the IF part is commonly called the Left Hand Side (LHS), or

antecedent clause; the THEN part is labelled the Right Hand Side (RHS), or the consequent

3 clause. In this example, the rule is to be applied to any animal of specified type who is the

declared parent of C H I L D. The RHS specifies that if the antecedent is true (matched

I against working memory), then it is concluded that the CH I LD is also the same TYPE as

3 the parent, and that fact is placed in workir g memory (asserted).

The LHS determines the eligibility of the rule, and the RHS typically performs one

3 or more of the following:

I
I 64

I
I

U
3 * Add to, delete from, or modify working memory,

- Perform I/O,

I • Perform calculations on data extracted from matched working memory,

• Make calls to foreign language subroutines or the operating system. (Neiman and

Martin, 1986:57)1
While the rule in Figure 18 is designed to completely match against working

3 memory, not all expert systems need complete knowledge of the problem in order to find a

solution. Representations exist to deal with incomplete or uncertain data. The rules in

MYCIN, a well-known medical diagnostic expert system, have probabilistic measures of

3 uncertainty embedded in them that determine rule selection and execution. (Rich, 1983:287)

The order of rules in the rule base should not reflect the order of steps to be followed

3 in solving the problem. The rule base should be unordered for two important reasons.

First, each production rule should stand alone as a problem-solving step for a specific

problem state; the programmer should not try to "group" rules into an execution sequence.

3 Second, the inference engine usually tries to match all the rules against the current problem

state and uses its own strategy to determine the execution order of the rules.I
Expert System Types. Production systems are a particular type of expert system. Expert

I systems use three basic types of reasoning: forward chaining, backward chaining, and a

combination of forward and backward chaining. Each will be discussed to show the

differences between production systems and other expert systems.

3 Forward Chaining Systems. Forward chaining systems start from the current

problem state and execute the rules whose LHSs are satisfied until either a goal state is

I reached or no more rules may be executed. This method builds a tree of solution paths,

I 65

I
I

I
3 starting with the initial state as the root node. The next level is constructed by matching the

LHS of all rules against working memory and using the RHS of matched rules to generate

I new nodes (problem states). The tree continues to grow in this manner until a node

3 matching the goal state has been generated or no more rules are applicable. (Rich, 1983:56)

Forward chaining is most effective when there are more possible goal states than

3 initial states, and when the number of paths reachable from each node is small. For

example, selecting and cooking a meal requires that the ingredients and means to prepare

I them exist before cooking actually begins. S. ;ce ingredients may be combined in different

ways for various meals, the number of goals (eligible meals) is normally higher than the

initial state (ingredients). Constraints placed on the combination of ingredients and their

3 preparation tend to reduce the solution paths (candidate recipes). Therefore, forward

chaining would be a good method for a robotic cook.

Backward Chaining. Backward chaining systems start from goal states and, using

the rules, reason backward to the initial state. In this method, solution trees are also

generated, with the goal state(s) as the root(s). Each level is generated by matching the

3 RHS of the rules against working memory and using the LHS to generate new nodes.

Reasoning proceeds in this manner backward until the initial state is reached. Since this

3 process begins with the goal, this method is often called goal-directed reasoning. (Rich,

1983:57)

I Backward chaining is most effective when there are more start than goal states, or

3 more intermediary states that lead to a start state than goal states. For instance, when

executing a route planner, it makes sense to back chain because there is only one goal: the

3 destination, but many locations close to the start state. An advantage of backward chaining

systems is their ease in providing justifications during the search process.

I
I 66

I
I

Forward and Backward Chaining Systems. Since most search techniques can be

performed in either direction, some expert systems take advantage of both forward and

backward chaining. One method is to reason both forward from the start state and

backward from the goal state simultaneously. For rule-based systems, this approach can be

ineffective. Searches proceeding in both directions could "miss" each other in the middle,

causing extra search operations to be performed. Another method is a more iterative

approach, where the direction of search is guided by some heuristic in the inference engine

according to the benefits of a particular direction of search at a given problem state.

The Production System Inference Engne. By definition a production system is a forward

chaining expert system, using IF-THEN structured rules, the so-called production rules.

Simply viewed, it is a program that begins with a list of known facts, executes for a time,

and eventually finishes when it can accumulate no new facts. (Valdez-Perez, 1986:30-31)

The inference engine, also known as the rule interpreter, controls the execution of the

program by matching the production rules' LHSs against working memory. A rule whose

LHS has matched may have its RHS executed by the inference engine. This is called

"firing" a rule. If more than one rule matches, it is the job of the inference engine to decide

which rule to fire, a process known as conflict resolution.

3 A production system inference engine will execute the following steps in a loop until

either a goal state is reached, or no new facts can be accumulated.

3 Step 1: MATCH Evaluate the LHS of the production rules to determine which

are satisfied, given the current contents of memory.

6

*|6

I

I

3 Step 2: CONFLICT RESOLUTION Select one production rule with a satisfied

LHS. If no production rules have satisfied, return control to the user.

Step 3: ACT Perform the actions specified in the RHS of the selected

* production rule.

Step 4: DQNE? If a goal state is reached or no more rules match, return control

to the user, otherwise go to step 1. (Forgy and Shepard, 1987:36)

The two desirable features of an inference engine are that it cause motion in working

memory, and that it be systematic. (Rich, 1983:32-33) If an inference engine fires the same

rule every time, a solution will probably not be reached. The same situation may occur if an

inference engine fires rules without constructing a path toward a goal state. A system

should satisfy the need for local motion (over the course of a single step), and global

motion (over the course of several steps). (Rich, 1983:34)

Conflict resolution strategies vary according to the intent of the system. In systems

where the optimal goal is not necessarily required, the simple strategy of choosing the rule

with the most antecedent conditions could be used. A rule whose LHS contains many

conditions is a) more specific than a rule with less conditions, b) will match fewer problem

states, and c) is probably a more appropriate choice. (Forgy and Shepard, 1987:36)

A System Example. A simple production system will illustrate the basic concepts

discussed thus far. The forward-chaining rule interpreter shown in Figure 19 is from the

well-known animal identifier system in Winston & Horn's LISP. (Winston and Horn,

1984:275-283)

* 68

I

I (DEFUN FORWARD-CHAIN () ;line 1
(DO ((RULES-TO-TRY RULES (CDR RULES-TO-TRY)) ; 2

(PROGRESS-MADE NIL)) 3

((NULL RULES-TO-TRY) PROGRESS-MADE) ; 4
(COND ((USE-RULE (CAR RULES-TO-TRY)) 5

(SETO RULES-TO-TRY RULES) ; 6
(SETO PROGRESS-MADE T))))) ; 7

I Figure 19. A Simple Rule Interpreter

I
The function FO RW ARD-CHA I N acts as the production system inference engine.

I The DO form on line 2 initially binds the variable RULES-TO-TRY to the list of RULES.

Typical production rules in LISP form are shown in Figure 20. On each successive run

through the DO loop, RULES-TO-TRY is bound to the CDR of RULES-TO-TRY, that

I is, if R U L E S-TO-TR Y is thought of as a stack of rules, then the top rule pops off the stack

5 on each iteration.

The COND form (lines 5-8) performs the pattern matching by calling USE-RULE,

I which matches the LHS side of the current rule against working memory. Conflict

resolution in this example is simple because USE-RULE also executes a rule's RHS as

soon as it matches. If a rule is fired, the USE-RULE expression (line 5) tests positive, and

lines 6 and 7 are executed. Line 6 resets the list of RULES-TO-TRY to the entire set of

RULES again. Line 7 sets the PROGRESS-MADE variable to T (true), signifying a rule

has been fired. If the rule does not fire, the USE-RULE form tests negative, the rule is

popped off the list of RULES-TO-TRY (line 2), and the loop is repeated. The test for

I
I 69

I
I

completion is when RULES-TO-TRY becomes empty, i.e. none of the rules fired in the

current problem state. At that time, the value of PROGRESS-MADE is returned.

Some sample rules are shown in Figure 20. The rules are implemented as LISP lists.

The pattern matcher keys on the tokens I F and THEN to identify the LHS and RHS of the

rule, respectively. The ">" token identifies a pattern to be matched and "pulled in" from

working memory (e.g. >AN I MAL), and the "<" signifies that the previously matched

value should be used.

Working memory variables (facts) are also represented as LISP lists. The lists are

stored in the list ASSERTI ONS. Figure 21 is a list of sample assertions about the animals

R OBBIE and SUZI L. Executing the system with the rules shown in Figure 20 and the

facts in Figure 21 would produce the output shown in Figure 22.

The first rule to be matched against the facts is rule I DENTI FY 1, which matches

against line 5 of Figure 21 "ROBBIE HAS HA IR." The consequent "ROBBIE IS A

3 MAMMAL" is placed on the frcnt of the list of assertions. Since I DENT I F Y 1 doesn't

match any more facts, no more assertions are made by this rule, and the system moves on

to rule I DENTI FY3. The LHS of this rule matched the assertion "SUZ I E HAS

FEATHERS" on line 6 of Figure 21. Matching and asserting proceeds in like manner until

3 the last assertion can be made (the last rule fails to match), and the systems halts execution.

Notice that the antecedent condition "< A N I M A L H A S B L A C K STR I P E S" keeps rule

I I DENTI FY 10 from firing, while the more correct rule I DENTI FY9 correctly identifies

R BOBB I E as a CHEETAH. This demonstrates the fact that all the antecedent conditions must

I 70

I
I

I
be met before the consequent actions can be taken. This is also the case for rules

IDENTIFY 14 and IDENTIFY 15.I
(RULE IDENTIFYI

(IF ((ANIMAL) HAS HAIR))
(THEN ((ANIMAL) IS MAMMAL)))

I (RULE IDENTIFY3
(IF ((ANIMAL) HAS FEATHERS)
(THEN ((ANIMAL) IS BIRD)))

(RULE IDENTIFY5
(IF ((ANIMAL) EATS MEAT))
(THEN ((ANIMAL) IS CARNIVORE)))

(RULE IDENTIFY9
(IF ((ANIMAL) IS MAMMAL)

((< ANIMAL) IS CARNIVORE)
((ANIMAL) HAS TAWNY COLOR)
((< ANIMAL) HAS DARK SPOTS))

(THEN ((< ANIMAL) IS CHEETAH)))

5 (RULE IDENTIFYl0
(IF ((> ANIMAL) IS MAMMAL)

((< ANIMAL) IS CARNIVORE)
((W ANIMAL) HAS TAWNY COLOR)
((< ANIMAL) HAS BLACK STRIPES))

(THEN ((< ANIMAL) IS TIGER)))

(RULE IDENTIFY14
(IF ((ANIMAL) IS BIRD)

((ANIMAL) DOES NOT FLY)
((ANIMAL) SWIMS)
((ANIMAL) IS BLACK AND WHITE))

(THEN ((ANIMAL) !S PENGUIN)))

(RULE IDENTIFY15
(IF ((ANIMAL) IS BIRD)

((ANIMAL) FLIES WELL))
(THEN ((ANIMAL) IS ALBATROSS)))

Figure 20. Sample Rules for the Animal World (Winston and Horn :275-283)

I 71

I
I

I

I (SETO ASSERTIONS ; 1
'((ROBBIE HAS DARK SPOTS) ; 2

(ROBBY HAS TAWNY COLOR) ; 3
(ROBBIE EATS MEAT) ; 4
(ROBBIE HAS HAIR) 5
(SUZIE HAS FEATHERS) ; 6
(SUZIE FLIES WELL))) 7

I Figure 21. Sample Assertions for the Animal World

I
(RULE IDENTIFYI SAYS ROBBIE IS A MAMMAL) ; I3 (RULE IDENTIFY3 SAYS SUZIE IS A BIRD) ; 2
(RULE IDENTIFY5 SAYS ROBBIE IS A CARNIVORE) ; 3
(RULE IDENTIFY9 SAYS ROBBIE IS A CHEETAH) 4
(RULE IDENTIFY15 SAYS SUZIE IS A ALBATROSS) ; 5

i Figure 22. Sample Output of the Animal Identifier

3This simple example shows some flaws of simple production systems. The first is "

lack of clear goal states. When any rule fires, a goal is apparently achieved, but the ultimate

I goal of this system is the most descriptive classification of animals possiV:,-. There is no

way to discern which of these statements is more correct: "ROBBIE IS A MAMMAL",

or"ROBBIE IS A CHEETAH." Both arecorrect, but "ROBBIE IS A CHEETAH" isa

stronger assertion. A second flaw is that the order of firing of the rules is always

front-to-back. So, RULES-TO-TRY forces an implicit execution sequence on the rules. A

programmer could order the rules so as to grossly affect the results. This would violate the

abstract boundary between the rules and the inference ngine by embedding a control

strategy in the structure of the rule base. A third flaw is that nothing prevents a rule from

I repeatedly firing. Because this system always adds new assertions to the front of the list.

I 72

I
I

I
3 and each rule is matched against the most recent data, if the RHS of a rule caused little

change in working memory, a solution might never be reached.

I While this simple example is not the perfect production system, it does demonstrate

* the basic concepts and execution. It also shows the need for some improvements including

maintaining some history of the rules that asserted facts into working memory (used for an3 "explanation" facility); providing a better conflict resolution for choosing between multiple

rule matches; matching only against facts which have changed. not the entire fact base; and

3 eliminating rules that duplicate previous assertions. The issues of better conflict resolution

strategy, smaller matching scope, and elimination of duplication have been addressed by

the Rete Algorithm, described in the next section.

The Rete Algorithm The Rete Match Algorithm is a fast method for comparing a set of

patterns to a set of objects to determine all the possible matches. (Forgy and Shepard,

1987:34) Developed by Charles L. Forgy in 1974 at Carnegie Mellon University, Rete was

designed to handle the unusually large pattern-matching operations in production systems.

Rete has several advantages over its predecessors. It greatly reduces the number of

redundant matching operations, provides a good scheme for conflict resolution, and is fast.

Rete is touted as the most efficient algorithm yet developed for performing match

operations on a single processor.

I The Rete Algorithm gains most of its speed both by limiting the scope of its

matching, and by eliminating redundant antecedent conditions. For small production

systems with few rules and objects, pattern matching is accomplished by matching all rules

against all objects in working memory. Real-world problem solving often involves

hundreds of objects, each consisting of 10 to 100 attributes, and hundreds, or even

I thousands of rules. Continuing the all rules/all objects matching scheme would be

I 73

I
I

U
extremely inefficient. In fact, much less than 1% of working memory changes on each

typical cycle, and usually no more than two to four changes are made by each rule firing.

U (Forgy and Shepard, 1987:37) Rete takes advantage of this by saving information about

LHS clause matches, updating the information when more changes in working memory are

made. Matching information is stored from cycle to cycle, sharply reducing the number of

3 new matches needed. In this way, the speed of the inference engine will dcpcnd on the rate

of changes in working memory, not on the size of working memory. This reduces

matching from an exponential function to a nearly linear functior.

In a typical production system, many of the antecedent conditions of rules are

identical. Since all rules access the same objects in working memory, logically many of the

3 conditions in their IF parts will be similar or identical. Rete uses this concept by scanning

the rule base before run-time, and compiling the rules into a data-flow graph. Rete

3 combines the identical IF parts into a single nodes on the net and links the nodes to all the

places they are used. In this graph, called the Rete Net, nodes in the graph contain the

operations to be performed by the matcher. The links represent the way data is to flow from

5one node to another in the graph. Redundant computations are eliminated by constructing

only a single node to perform a given match operation, linking the node to places where a

result is needed. (Forgy and Shepard, 1987:37)

The Rete Net. The Rete Net serves as a function to map changes in working

U memory into changes in the set of satisfied production rules. (Forgy and Shepard,

1987:37) Changes in working memory are passed through the net as tokens. When a token

is received by a node, the node processes it according to the match computation stored

3 there, and, if necessary, passes the token along to the next node. When a token has passed

all the way through the net, then a rule has "matched,"and that rule is added to the conflict

I resolution set.

* 74

I
I

I
There are basically two kinds of data tokens. Alpha Tokens are ordered pairs. The

first piece of information ila tag, a pointer to an object in working memory. The second

Ipiece is an indication to the nodes whether the element is being added to or deleted from

i working memory. An Alpha Token is intended for single pieces of data. Beta Tokens are

ordered lists. They consist of two or more data tags, and an indication of whether to add or

* delete the objects.

There are basically four kinds of nodes in a simple Rete Net: root nodes, single input

3 nodes, two-input nodes, and terminal nodes. A root node performs no processing and is

used mainly as a starting point for the system. A data token received by the root node is

immediately passed along to its successor nodes. A single input node will test a particular

3 value of the object in an alpha token. If the test succeeds,the node makes a note of the

match and passes an identical copy of the token to its successor nodes. A two-input node is

I used to tie two single input nodes together. The two-input node keeps track of successful

tests by its predecessor single input nodes, and determines when conditions are met by the

Itokens that satisfy both input conditions. For a rule with N conditions in its IF clause, N- I

3 two-input nodes will be generated to tie them together. The terminal node adds the

completely satisfied rule to the conflict set. The terminal node contains information about

3 the antecedent conditions of a rule and about when it received a data token, but all the

elements referred to by the token must satisfy the terminal node before it will nominate a

I rule for firing.

Construction of the Rete Net is a two-step process. First, objects are compiled into

working memory classes, with associated attribute slots. In OPS5, an early implementation

3 of Rete, attributes are stored on LISP property lists. Objects with the same attributes share

attribute slots. Second, the production rules are compiled into the Rete Net. (Neiman,

3 1987:43)

I 75
I
I

I
An example of a one-input node rule is I DENTI FY I from Figure 20. The

antecedent clause consists of a single condition and would compile into a single input node

5 net as showr in Figure 23.

If the statement (ROB B I E HR S HR I R) is asserted in working memory, a token

will be passed to the first one-input node, which will match the >AN I MAL with ROBB I E

3 and pass the token on to the next node. The next node will match the HAS condition with

the value H A I R. Passing this test, the node will pass the token on to the terminal node.

Determining that the LHS of I DENTI FY 1 has been completely satisfied, the terminal node

will place the RHS of the rule, the assertion that (ROBB IE IS MAMMAL) on the agenda

*to await execution.

I
(RULE IDENTIFYI

(IF ((ANIMAL) HAS HAIR)) ;LHS
(THEN ((< ANIMAL) IS MAMMAL))) ;RHS

* ROOT

ONE INPUT [ANIMAL] =

ONE INPUT [HAS] = HAIRI4
TERMINAL [assert (a IS MAMMAL)]

I Figure 23. A Sample Rule Using One-Input Nodes

I
A rule from a blocks-world system that would be compiled using a two-input node

5is shown in Figure 24.

I 76

I
I

I
3 (RULE FIND-COLORED-BLOCK

(IF ((GOAL) IS (FIND-COLLORED-BLOCK (> COLOR))
((> BLOCK) COLOR IS (< COLOR)))

(THEN ((G30) IS SATISFIED)
(FOUNDBLOCK IS (< BLOCK))))I

ROOT

(1) [GOAL =a] [BLOCK =0 1(3)

1 (2) [IS FIND-COLORED-BLOCK]

U
(4) [COLOR = Z]

* 4 [(a IS SATISFIED)]

TERMINAL [(FOUNDBLOCK IS 13)]

Figure 24. A Sample Rule Using a Two-Input Node.I
When the root node in this example receives a data token, it passes into both successor

nodes. Nodes 1, 2, and 3 are single input nodes, while node 4 is a two-input node. Node 1

I will try to match on tokens referring to a GOAL. Such a token will be passed on to node 2

to determine if the current goal is to find a colored block. Node 3 will try to find a block in

3 each token. Both nodes 2 and 3 will pass their matched tokens on to node 4. When node 4

has received successful tokens from both its predecessors, it will send a token to the

I terminal node. If the assertions (GOfL42 IS (FIND-COLORED-BLOCK RED)) and

I 77

I

I
3 (BLOCK3 1 1S RED) exist in working memory, the terminal node will place the clause to

assert (GORL42 IS SATISFIED) and (FOUNDBLOCK IS BLOCK31) in the conflict

I set. For more advanced implementations of Rete, there are many other kinds of nodes

and token operators, but the nodes and tokens presented here are the most frequently used.

Conflict Resolution. The real function of the Rete Algorithm is to produce the

3 conflict set (the agenda). The conflict set is the collection of rules whose LHS clauses have

matched and are waiting to have their RHS executed. Since Rete-based systems place a

3high priority on conflict resolution, their inference engines operate with a modified

production order. The typical order, as stated previously, is (1) MATCH, (2) CONFLICT

RESOLUTION, (3) ACT, and (4) QUIT or GOTO (1). The modified production order for

Rete is:

Step 1: CONFLICT RESOLUTION Input is the conflict set (the output of

5 Rete). Select one rule with a satisfied LHS. If no rules have a satisfied

LHS, QUIT

Step 2: ACT[Perform the actions specified in the RHS of the selected rule

Step 3: MATCH Evaluate the LHS of the rules to determine which are satisfied

given the changes in working memory from step 3. Output is the

3 conflict set

Step 4: QUIT if no rules match, otherwise go to step 1.I
The conflict set is a list of ordered pairs. Each ordered pair consists of the rule name,

and a list of elements matched by that rule's LHS. Rete conflict resolution is finding one

3 ordered pair from the set that dominates all others. One conflict resolution strategy is called

MEA.

I
I 78

I
I

I
3MEA ensures that

0 A rule will fire only once upon the assertion of a working memory element,

• The most specific rule (judged by the number of LHS conditions) will take

precedence,

The most recently added working memory elements will be most likely to

3 cause a rule to fire.

3 This strategy is suitable in most cases, but has some limitations. There is no

mechanism to allow all or a number of eligible rules to fire, if a programmer wishes to

Ibypass conflict resolution for a block of tasks. However, since MEA tends toward the

latest data (and therefore, the most recently fired rule), it is easy to add a rule to an existing

rule base and have that rule fire at the right time.I
Applications of the Rete Algorithm. The Rete Algorithm is currently being used in a wide

3 variety of commercial applications and development tools. It has been implemented in

LISP, BLISS, Pascal, and C. All of the OPS systems are production systems that use the

Rete Algorithm. OPS5 was the first, implemented in LISP. OPS83 is implemented in C.

OPS83 is of special note, because it has been specially modified for efficient

operation. OPS83 programs are linked to the C run-time system/libraries. (Neiman and

3 Martin, 1986:68) Operation on a VAX is estimated at thirty times faster than the LISP

implementation of OPS5. To achieve this speed, the OPS83 compiler "walks over" the

compiled Rete Net, and writes out machine code at each node to do the specified match

3 operation. The computer hardware then actually becomes the system interpreter. (Forgy

and Shepard, 1987:39)

7
I 79

I
I

I
Commercially available production system development tools include Inference

Corporation's Automated Reasoning Tool (ART) and the Carnegie Group's Knowledge

Craft for LISP machines, Gold Hill's GoldWorks for the IBM AT, and ExperIntelligence's

ExperOPS5 for the Apple Macintosh. These production system "shells" are useful for

problems requiring greater efficiency for real-world problem solvers like Digital Equipment

3 Corporation's R1/XCON, and Texas Instruments' Robotic Air Vehicle.

3 Summary Production systems are increasingly being used to solve problems that cannot be

easily or quickly solved by traditional algorithmic computer methods. Since production

I systems can reason about symbols, objects, and ideas, they can use problem

3domain-specific knowledge in the form of rules to solve a problem forward from the

current state to a goal state. The Rete Algorithm is an efficient way of dealing with

I problems that may be solved by production systems where there are many rules to be

applied, and many objects to consider. Implementations of the Rete Algorithm exist in

U higher order languages for popular classes of computers, and production systems and

system shells based on Rete are now being used in commercial applications to solve

real-world problems.

i

I

I
I

Appendix C. ES Shell Implementation Notes

This appendix compliments the design discussion presented in Chapter Three, and

the ESShell source code. The implementation of the ESShell on the VAX with the AOS

Shell and testing with the PES rules are described informally. The challenges to the

implementation are presented along with their working solutions. This appendix is

intended for programmers who desire a better understanding of why certain approaches

were taken in the code. Readers desiring only a high level understanding of the ESShell

design will find this in Chapter Three.

The ES Shell and the AOS. This project grew from work in two areas: embedded flight

computer operating system design, and the application of expert system to embedded

avionics control. The Avionics Laboratory, Wright Research and Development Center,

while developing the kernel operating system for the next generation flight computer,

envisioned an expert system shell as a part of this operating system. The expert system

shell would function much like a system service, such as file I/O or message passing

routines. The operating system was to be developed in Ada and operate on an advanced

flight processor architecture. The lab had sponsored research into expert system control of

air vehicles, and the product of this research seemed a natural application to test with the

expert system shell running under the new operating system.

The Ada Avionics Real-Time Software (AARTS) Operating System (AOS) provides

the kernel operating system for the VHSIC Avionic Modular Processor (VAMP), the next

generation of the Mil-STD-1750A instruction set architecture. The target application is the

Piloting Expert System (PES) of the Robotic Air Vehicle (RAV) project which contains the

piloting knowledge necessary to pilot an autonomous Air Vehicle on a low-level

81

reconnaissance mission. The PES currently executes in a forward chaining expert system

shell on a LISP machine, passing messages to distributed system of cooperating expert

systems in the RAV. The expert system shell, written in LISP, is based on Rete and

tailoied for ES development, debugging and testing on the PES implementation, but an Ada-

based expert system shell had to be developed for use under AARTS.

The development of the new expert system shell, called ESShell, proceeded

according to the following steps:

3 Selecting the inference engine components necessary to support the ESShell,

- Selecting the AOS services necessary to accomplish the ES actions,

• Determining the interfaces between the inference engine and the problem

environment,

- Developing the ESShell in VAX Ada,

- Testing the ESShell with the AOS Shell on a VAX,

- Testing the PES running on the ESShell and simulated aircraft model,

- Evaluating ESShell's performance, and

• Recompiling ESShell with TARTAN Ada and the AOS and testing on the

VAMPs.

Development of the ES Shell. The ESShell provides the interface between the inference

engine and the problem environment-- the real-time man-in-the-loop aircraft simulation

used for avionics testing in the Avionics Lab's Integrated Test Bed (ITB) facility. The

ESShell would man' . requests from the ITB's Operational Flight Program (OFP) for

expert system services which would include system initialization, data update, and problem

solution. The ESShell would also provide interfaces for the inference engine to interact

82

with the simulation, either to control it or communicate with other flight software, such as

automated terrain followers or route planners.

The design of the ESShell is described in Chapter three of this thesis. An

abbreviated module specification is given below.

ES Shell

Input: Procedure or task entry.

Pesing: Performs the typical expert system cycle: update, match, select,

and execute. Acts as the main interface to the AOS. Defines messages, objects, and

events.

tQput: None

Inputs_.: Rule base filename

Processing: Opens rule file, loads rules, parses them for correct syntax,

compiles correct rui, s into Rete net. May load object definitions from file, creating

entries for objects in working memory.

Ou.tput: Rete net

UPDATE

Inpu= : Incoming bus messages

Processing: Performs update, and by assertion, implicitly the match portion

of the expert system cycle. Provides interference to incoming bus messages and

AOS message services. Filters data and asserts object changes to Rete net.

42t u: Assertions to Rete net, changes in rule activations to agenda.

FORWARD CHAIN

Input: Agenda (list of activated rules in Rete net)

83

Processing: Performs select and execute portions of cycle. Selects a rule

from agenda and executes its RHS. New data may be retracted or asserted as

consequence of RHS actions in turn causing changes to agenda. Continues to select

and execute rules until agenda is empty. Provides interface between inference

engine and problem environment via user-defined functions, including outgoing

messages.

Outputa: Modifications to Rete net. Outgoing bus messages. Returns

number of rules fired to calling program.

CLIPS/Ada Components. ESShell required a forward-chaining inference engine

based on Rete and written in Ada, and the means to access and modify elements in the

inference engine's working memory. A Rete based system uses a compiled network

representation of the production rule base, so some means of loading and compiling the

rule base was also required. Since there are already inference engines written in Ada which

are based on Rete, the development of the inference engine itself was not a part of this

project.

CLIPS/Ada is a Rete-based expert system development tool distributed by NASA.

It is an Ada implementation of the C Language Integrated Production System (CLIPS).

CLIPS/Ada is available at no cost to government personnel and contractors by calling the

CLIPS users help desk at (713) 280-2233. The components used from CLIPS/Ada to

support ESShell were the rule/loader and compiler, the assert and retract mechanism, and

the CLIPS inference engine.

The rule loader/compiler begins by opening the production rule file, and then reads

the production rules in one at a time. As the rules are loaded, their syntax is pursued for

correctness. Rules with valid syntax are compiled into the Rete net; others are discarded.

84

i

3 The routine compiles the net to take advantage of the structural similarity of the rule's LHS

clauses. LHS clauses which are common to multiple rules are shared in the net as object

I pattern tests. This sharing allows some space savings in the net.

The inference engine uses the agenda produced by the asserts and retracts, selecting

i the rule at the top of the list for execution. The RHS actions of the rule referenced by a

3 pointer from the agenda are executed in turn. Each RHS action may further modify

working memory, producing a new agenda. The inference engine continues to run until the

3m agenda is empty, or a run limit set by the calling program has been reached.

ES Shell UPDATE Module. The ESShell also performs the update part of the

I typical production system cycle of update, match, select, and execute. During the update,

3data is brought in from the simulations' aircraft communications bus, decoded, and filtered

for novel data. Changes in the problem state are introduced into the inference engine's

working memory by the ESShell.

In order to introduce these changes into working memory, assert and retract

3mechanisms were required. The CLIPS ADDFACT and RETRACT routines were chosen

to fulfill this need.

Facts are prepared for the assert by determining the fact length, allocating the fact

3 memory segments, typing the fact segments, and inserting the data values appropriately.

The CLIPS UTILITY package provides the necessary routines, in GET-Segment, Set-

3 Segment-Kiid, and Set-Segment-Value. The method of preparing facts using these

functions is described in the CLIPS/Ada Advanced Programming Guide.

Once the fact has been prepared, it may be asserted using the ADDFACT routine.

U It is important to note that the ADDFACT function scans the list of known facts for

duplication. In the event of a duplicate, the new fact is discarded, and its storage space

3 deallocated. No notice of this is given to the calling program by ADDFACT. Further use

I 85

I

of the pointer to the discarded fact may cause system erro;, so care must be taken to avoid

this situation.

The RETRACT function requires a pointer to reference the fact to be removed from

working memory. The UPDATE Module of ESShell must therefore maintain pointers to

-- all facts which it asserts as each fact may eventually be retracted.

3 Many objects in the piloting domain are well-defined, and attributes of these objects,

such as airspeed and altitude are known a priori. It was convenient to pre-allocate pointers

to facts representing these attributes. The pointers are stored in an array indexed on the

attribute name.

I CLIPS has no mechanism for modifying a working memory element in place, so for

each fact update, the old fact had to be retracted, and a new fact representing the update

created and asserted. This introduced additional overhead in the extra deallocation and

I reallocation of fact memory, and possible consequent activation and deactivation of rules.

AOS Components. The AOS services necessary to support the ESShell were the

-U MESSAGE_10, TIME, EVENT, and FILE_10. FILE_10 was required to load the rule file

from the System Mass Memory (SMM) device. MESSAGEIO was used for

communications between the inference engine and other parts of the simulation. The

3= EVENT services were used for task synchronization and to provide a rough interrupt

capability. The TIME services were used to evaluate the ESShell's execution performance

i at run time.

CLIPS provides an interface to the inference engine which may be used by external

I routines to call for execution. This interface was used by ESShell to perform the select

3 and execute parts of the production system cycle. In order to control the simulation from a

rule's RHS, the ESShell was required to relay RHS actions to the environment. The

CLIPS inference engine has the capability to execute user-defined functions on the RHS of

I 86

_I

I
3 a rule. Using this capability, a user may define a function name and augment list which

become a part of the RHS syntax. The function SEND was developed to accommodate

3 RHS con i ' of the simulation. It takes as augments the simulation object to be modified,

and its new value.

I he UPDATE and SEND routines described earlier use the AOS MESSAGE 10

3 services to receive and transmit messages over the simulation's communications buses.

UPDATE receives aircraft state vectors and other environment information via the bus.

3 Bus message formats and ID numbers must be agreed upon by both sender and receiver at

compile time. It was convenient to structure the incoming data buffers as Ada records

I where the record component naines correspond to aircraft attributes such as airspeed or

3 altitude. The component names were also defined as an enumerated range which was used

to index into the array of pointers whose facts represented the attributes. For instance Data

3 Buffer AIRSPEED correlates to FACTARRAY(AIRSPEED). Use of this convention

made the code more readable, and the fact array easier to transverse, aiding in the domain

I independence of the update algorithm.

To reduce the probability of duplicate fact assertion, UPDATE filters the incoming

data. Filter values specify the minimum amount of change in a data value before it is

3 reflected in the net. These filter values are domain specific and must be determined by the

expert system developer prior to run time.

3 This approach requires the storage of the last update value. The values in the CLIPS

fact list could be used, but their retrieval is slow and cumbersome compared to a simple

record retrieval. A record structure was defined, then, to store the last update values. Both

3 the old value record and the filter value records use the same record structure as the new

data record. This makes the filtering code easier to read and maintain. An example filter is

* shown in Figure 25.

* 87

I
I

U
The SEND function transmits messages from the inference engine to the external

environment. During the development of ESShell, outgoing messages were limited to

those going to the aircraft simulation, but SEND could be used to communicate with other

applications running on other CPUs or in other VAMPs. The SEND function receives its

arguments from the inference engine. The first argument is a message ID number which

3 corresponds to the logical address of the receiver. Following the ID number is an argument

list containing the pieces of information to be transmitted. The message ID is required

3 because the AOS MESSAGE_10 services use message connections similar to pipelines

during communications. The SEND function must reference the connections explicitly for

each distinct message, and so must contain separate processing to encode and transmit each

* message.

I
if abs(AIRSPEED.NEW - AIRSPEED.OLD) < AIRSPEED.FILTER then

UAIRSPEED.OLD:= AIRSPEED.NEW;

end if,;MODIFY(FACTARRAY(AIRSPEED),AIRSPEED.NEW);

Figure 25. A Sample Data FilterU

I Implementation Challenges. Several problems in the CLIPS/Ada and AOS code had to be

3 overcome before the ESShell could be effectively tested. These problems and their

working solutions are described in this section.

I
* 88

I

U
3 CLIPS Bugs.

Symbol Reference Counts. When a fact is created and a fact segment is used

3 to represent a string or word, the string or word is hashed into a symbol table, and a

pointer to the symbol table entry is stored in the fact segment. Several facts may reference

the same symbol, which saves storage space if the symbol requires more space than the

3 pointer. As each new fact references the symbol, the symbol's reference counter is

incremented. Similarly, as each of these facts is retracted, the reference counter is

3 decremented appropriately. Prior to retracting the old fact during the update process, the

fact segment values are retrieved. The CLIPS routines which retrieve these values return a

pointer if the value is a symbol. The retrieved symbol pointers arc assigned to the new

3 fact. If the retracted fact , however, was the last to reference these symbols, their counters

are decremented to zero and the symbols' storage is deallocated. The newly created fact

3 then contains pointers to deallocated space, which often produced undesirable results. To

work around this, when the newly created facts segment have been assigned the symbols,

U their symbols' reference counters were explicitly incremented using the symbol package

routines provided for that purpose. After asserting the fact (which automatically increments

the counters) the counters were explicitly decremented. The usual order of retract before

3 assert was maintained to reduce conflicts in rule activation and deactivation.

Memory Allocation. Another problem was caused by CLIPS memory

3 segment allocation routines. When storage is set aside for a new fact, the memory is

allocated internally by CLIPS from a temporary free space list. Presumably, when the

memory segments are allocated or asserted, this temporary list should be updated. The

3 temporary list is used by the inference engine for the creation of temporary variable

bindings. These temporary bindings are deallocated after the inference cycle has completed.

3 When the inference engine performed this deallocation, the newly created facts were

* 89

I
I

I
3 deallocated as well, also producing undesirable results. To work around this, the

temporary allocation list was explicitly reset after each fact creation.

3 Working Memory Modification. The way the CLIPS functions handle

working memory caused some problems in the development of the ESShell. When a fact

is initially asserted, a pointer is returned which references its entry in the fact list. In order

3 to externally retract the fact, this pointer must be known. Therefore, the external routine

must keep the fact pointer in order to successfully modify working memory.

If the fact is modified internally, say as the consequence ,- a RHS action, the

pointer to the new fact will change. The pointer maintained by the external routine may

U then be referencing a deallocated memory segment. Any further attempt by the external

3 routine to access this fact may result in program termination, or worse, return garbage

memory.

3 To get around this working memory was partitioned between objects which

could be accessed and modified only by external routines and those objects which could

U only be modified internally. This type of partitioning was arbitrary and caused extra work

for the inference engine, and affected the way rules were written. This partitioning is not

checked by the parser, making the programmer responsible for enforcement. User

3 enforcement of this kind of problem is clearly undesirable in an embedded avionics

environment. An approach which allows unrestricted internal and external access and

* modification of working memory is needed.

Error Handling. CLIPS error handling and reporting caused some problems

in the development, as well. In some cases, lower level functions are operating many

3 levels below their caller. Multiple routines are often serviced by a single error handler,

which may, in turn, pass errors up the call chain. By the time an error reaches the caller, it

3 may be ambiguous or misleading. CLIPS makes heavy use of status variables at lower

I 90

I

U

levels and exceptions at higher levels. A more consistent approach should be used.

Exceptions are the preferred Ada approach, but are often harder to service and then resume

3 program flow.

I Asynchronous Messages. The AOS MESSAGEIO's handling of

3 asynchronous messages caused some problems during the development of the ESShell.

MESSAGE _IO leaves the control of the message reception buffer up to the receiving

program. If the receiver locks the buffer while processing it, incoming messages may be

lost. The aircraft control messages contained in the RHS actions of the PES are

I asynchronous in nature, and losing any of these messages was considered intolerable. A

two-way software handshake was instituted to restrict the sender from transmitting until the

receiver is ready to process. The effect of this scheme on the inference engine is

3 determined by the amount of time it must wait for the ready handshake. Some kind of

message buffering or better handling of asynchronous messages by the AOS should be

3 researched to ensure the inference engine doesn't have to wait indefinitely for a receive to

become ready.

File Services. Another problem lay in the AOS FILEIO services. The SMM

3 is a byte-oriented file structured device which exists on the HSDB for storage and retrieval

of information. FILE-1O provides all of the basic file services to the SMM such as file

open, close, read, and write operations. Because the SMM is byte-oriented and the CLIPS

rule loader is string or line oriented, modifications would have to be made to either

I- FILE_10 or the CLIPS loader to accommodate rule loading and compiling. The physical

3 interface between the SMM and the VAMPs was not operational during the period of this

research, so modifications to the AOS FILE_10 or the rule loader were deferred.

I 91

I
I

I
The question was raised, however, whether the rule loader should be a part of

the run-time ESShell at all. The loading and compiling process takes place only once,

presumably at system initialization. If the ESShell were to truly support calls inflight, it

might be necessary to load and compile new rule files on the fly. If the rule bases are

considered to be static in flight, a view heartily supported by the avionics community, then

3 all rule base compilation could be performed prior to the flight. Now a method would be

required to load only the pre-compiled nets into memory. This eliminates the need for the

rule parser and compiler, saving space in the code segment of the ESShell.

The subject was discussed with COSMIC, NASA's CLIPS support

I organization, who agreed to provide a method for accomplishing pre-run compilation.

Their approach involves compiling the rules into a net, and saving the Ada representation of

the net out to a set of package specifications. These specifications would be compiled and

linked with the ESShell and associated with the inference engine at run time. This

approach could allow multiple compiled nets to be linked with ESShell and be referenced

3 in context by the use of pointers. The net pre-compilation procedure provided by NASA

was suitable for testing with a single small rule base and was used during development.

Two issues have yet to be resolved before this method may be used

successfully. The first is that while parsing and compiling at run time helps to realize a

code segment reduction, the linking of multiple nets to the system increases the size of the

data segment. As the results in Chapter Five show, the increase in space for a compiled net

is significant and easily exceeds the VAMP's 64 Kword data segment limit. An approach

which considers actively swapping compiled nets in and out of processor memory needs to

* be considered.

The second issue is of truth maintenance. In a real-time non-monotonic

3 environment, data potentially may change at a rapid pace. How does one account for the

I92

U
current problem state when a new net is brought into context? Simply reasserting all facts

in the fact list may be unnecessary and require a large overhead. It may be possible to

partition objects in the problem environment by context but this partitioning may be difficult

as some objects may span many inferencing contexts. This difficult issue was not

addressed in the development of the ESShell and requires further research.

Implementation Effects on ES Shell Design Goals. Some of the development goals of

ESShell were to make it modular in design and interruptable, as OFP application tasks

must often be halted in the midst of their execution. To operate in a real-time environment,

Ithe ESShell must be able to support real-time requirements. For ESShell to be

considered useful for further development, it should also exhibit independence from the

problem domain as much as possible.

The ESShell was designed into three main modules - the rule loader/compiler, the

data update module, and the inference engine. The use of Ada in the development of

I ESShell faci!itated the modular approach. Each module was defined as a package. The

individual modules included the CLIPS and AOS services necessary in the context of their

own packages. The modular approach made testing and debugging the modules

* individually easier as well.

Interruptabilty. Interruption of an inference engine during operation can have

disastrous results if the engine is modifying working memory. The Rete net may be left in

an indeterminant state if some operations are not complete.

Some operations, therefore, must be considered atomic, and hence not interruptable.

For the purposes of this research, the assert and retract mechanisms must be considered as

such. The routines may not be interrupted from the time they enter the Rete net to the time

when they exit and rules are activated or deactivated accordingly. In a larger sense, the

I 93

I
I

I
3 logical MODIFY operation, which consists of a retract followed by an assert should be

viewed in much the same way.

In order to accomplish this approach, an interrupt check would have to be made at

the top of the inference engine's select-execute-match cycle. Since minimal modifications

were desired on the CLIPS software, the check was placed in the outer control loop in the

ESShell itself. Consequently, this placement restricts the interrupt point to the end of the

inference chain (i.e. when the inference engine runs out of rules to fire). The time, then

from the interrupt signal to the halt in ESShell depends on the state of working memory,

and the rules active in the inference chain.

A rough task interruption was implemented using the AOS EVENT services. The

3 inference engine executes the match-select-execute cycle until it turns out of rules to fire.

This constitutes the inner loop of the ESShell. The outer loop consists of the processing

of new data, and calling the inference engine. To minimize the impact on the CLIPS code,

a check of the EVENT ES-HALT was placed at the top of the outer control loop. If this

I event is set ESShell will exit the outer loop. This, of course, will only take place after all

eligible rules have been fired in the inner loop. If a finer grain control of the ESShell is

desired, the event check may be placed at the top of the inference engine's cycle.

3 Domain Independence. The ESShell is relatively independent of the problem

domain of its knowledge base. Any dependencies are a result of the need to interface the

3 knowledge base in a specific way with the environment. For example, the UPDATE

module receives incoming bus messages from the aircraft, in the case of the PES

knowledge base. These message formats must be predefined, according to the AOS

3 specification. The filters for the incoming data are problem specific as well. The ESShell

code which must be modified by an application programmer ,however, is limited to the

3 specific portions of UPDATE, dealing with these two functions. The declaration and

I 94
I
I

I
initialization of message formats, fact pointers, and data filters are confined to individual

packages included within UPDATE to minimize their impact.I
Synopsis of Code Develomd. The development effort was divided between the design and

development of new code and the use or modification of existing code to support the

ESShell functions. These code components are summarized in Table 2.

Table 2. Developed vs Modified Software

I Developd Used/Modified

Expert System Shell CLIPS Inference Engine

Knowledge Base CLIPS Rule Loader/Compiler

AOS Service Interfaces AOS Services

Update module

I RHS user-defined functions

The overall system layout showing the relationship between the ESShell, the AOS, and

the CLIPS/Ada Modules is shown in Figure 26.

Testing with the PES. The sample rule base chosen to exercise the functionality of

ESShell was the PES. Due to size constraints, only a small subset of the total PES rule

base could be used. The TAKEOFFS portion was selected because its twenty rules

represent all major knowledge constructs of the PES as well as all major interfaces to the

problem environment, i.e. the autonomous air vehicle.

I
* 95

I
I

UU
IU

ID(

< 0 C0

0II
* 0

IIc

I 96

I
A simple aircraft model was used to test the rule base from engine start through

takeoff ana climb. To achieve this, the inference engine had to reason about the aircraft's

current state, and control its performance. Both incoming and outgoing bus messages were

needed.

IeeThe ESShell was tested with the AOS Shell on the VAX. The AOS shell provides

the operating system service interface specifications and simple routine stubs to test them

with. The update module interfaced to the AOS MESSAGE_10 RECEIVE function SEND

used the AOS TRANSMIT services.

The expert system was able to receive data from the aircraft model. This data was

I filtered by UPDATE prior to assertion in thc net. After reasoning about this data, the

i expert was able to communicate stick and throttle commands to the modei to guide it into

the air.

3 The TAKEOFFS expert system successfully demonstrated ESShell's ability to

interact with the problem environment in a meaningful way, and in an embedded mode.

I Use of the AOS shell showed that the ESShell could use the services of the AOS

necessary to accomplish its goal and to act as a callable routine.

The AOS shell contains the interfaces and stubs necessary to test the

5 MESSAGE_10, TIME and EVENT services used by ESShell. The FILE_10 was not

implemented in a fashion suitable br testing, so the VAX VMS file services were used

instead. To take the ESShell further and test it on the VAMPs, the FILEIO services

would have to be used, or the pre-compiled nets linked with the run-time module.

Implications for Future Development. CLIPS contains many features which enhance its

use as a development tuol. Many error checking and debugging functions, along with an

interactive-level inference engine interface, make rapid prototyping rule-based systems

I 97

I

easier. The CLIPS inference engine and fact modification routines allow the introduction of

non-static data structures and rule bases. CLIPS also provides its own screen I/O and

extended math library packages to enhance portability. Many of these features should be

removed, however, for an embedded run-time system, because most of these features come

at the expense of code size and execution penalties, as well as data size overhead.

Preparing the ESShell itself for VAMP testing should be fairly straightforward.

The modular design of the ESShell is a nice fit with the VAMP and AOS architectures.

Most of the AOS service interfaces have been tested. Bus message interfaces would need

to be defined between the expert system and the actual aircraft model of the ITB.

Actual VAMP implementation would depend, however, on the development of a

production-quality inference engine. While the CLIPS engine is suitable for development

work, it has too many bells and whistles to execute efficiently in the embedded

environment, or even fit within the limited memory of the VAMPs.

The inference engine must use an efficient compiled representation of the Rete net.

The rule to net expansion for the CLIPS representation of the TAKEOFFS rule base was

over 5:1. The storage of tokens in the beta memory of the net requires significant space as

well. The VAMPs have only 64 K word data segments and the relatively small (20 rules)

TAKEOFFS and few objects (65) take over one third of this space. It may be possible to

develop a context switchable net to address the space problem, but then truth maintenance

becomes a concern.

From a development perspective, the new production engine should use the same

Irule syntax or representation as the development systems. This will facilitate maintenance

3_ of the knowledge base. This allows full developmental test and debug of the rule base on

the development platform, and testing i,, behavior on the delivery platform.

-- 98

I
As previously mentioned, the engine should allow unrestricted access and

modification of working memory by both internal and external routines. This will eliminate

the arbitrary partitioning of" working memory elements required under CLIPS.

If it is assumed that the rule base will be static during execution, no parser or

compiler wil be needed as well as functions which modify the structure of the Rete net

I itself. This should payoff with both code size reductions and execution performance

increases. Many non-static data structure handling associated with interactive use may be

eliminated as the majority of problem attributes are well-defined.

If the knowledge base is thoroughly tested on the development platform, the

I production engine may eliminate many of the debugging and error handling code

3 commonly found in development systems like CLIPS.

The support of user-defined functions like SEND is essential in order to provide the

3 expert system an interface to the problem environment. The CLIPS method is both

convenient and flexible.5
Summary. The implementation of the ESShell with the CLIPS/Ada and AOS components

necessary to support it were presented along with some challenges which had to be

3 overcome during the integration. A successful test of the ESShell was accomplished with

the PES TAKEOFFS knowledge base on a VAX. The implementation of the ESShell

3 exposed many of the weaknesses of the systems whose services it required. In doing so,

requirements for future development were made clearer.

I
I
I 99

I
I

I
* fBibliogaphy-

Aho, Alfred V., eal. The Design and Analysis of Computer Algorithms. Reading MA:
Addison-Wesley Publishing Company, 1974.

Benning, Stephen L., and R. Scott Evans. "Real-Time Operating System for Advanced
Avionics Architectures," Proceedings of the IEEE National Aerospace Electronics
Conference. NAECON 1988. 138-145. New York: IEEE Press, 1988.

I Blair, Jesse L., Chief, Systems Group, Avionics Laboratory, Wright Research and
Development Center, Wright-Patterson AFB, OH, 16 October 1990.

3 Booch, Grady. Software Engneering with Ada (Second Edition). Menlo Park CA: The
Benjamin/Cummings Publishing Company, Inc., 1987.

Brassard, Gilles, and Phillipe Bizard. Algorithmics- Theory and Practice. Englewood
Cliffs NJ: Prentice-Hall, Inc., 1988.

CLIPS Reference Manual (Version 4.3). Software User's Manual JSC-22948. Artificial
Intelligence Section, NASA Lyndon B. Johnson Space Center, Houston, July 1989

Cohen, Norman H. Ada as a Second Language. New York: McGraw-Hill Book
Company, 1986.

Common Module Systems. Preliminary Specifications. Digital Processing Systems,3 Westinghouse Electric Corporation, Baltimore, undated.

Developing Ada Programs on VAXIVMS. Programmer's Guide AA-EF86A-TE. Digital
Equipment Corporation, Reading MA, 1985.

Fanning, F. Jesse. Symbolic Processing Configurations for Real-time Embedded Avionic
Computer Systems (Addendum). Baseline Memorandum, Project 20031112.
System Avionics Division, Avionics Laboratory, Wright Research and Development
Center, Wright-Patterson AFB OH, 31 August 1989.

------. An Introduction to Production Systems and the Rete Algorithm. Unpublished
Report to AFIT/EENG 623. Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, March 1988.

Forgy, Charles L. and Susan J. Shepard. "Rete: A Fast Match Algorithm", AI Expert, 2:
34-40 (January 1987).

Forgy, Charles L. "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Maiching Problem", Paper Submitted to Artificial Intelligence, 12:17-37 (Pre-print
Release 1982).

----- On the Efficient Implementation of Production Systems. PhD Dissertation.
Carnegie-Mellon University, Pittsburgh, 1979.

I 100

I
I

I

Giarrantano, Joseph C. CLIPS User's Guide (Version 4.3). Software User's Manual.
Artificial Intelligence Section, NASA Lyndon B. Johnson Space Center, Houston,
August 1989.

Guide to VAX Performance and Coverage Analyzer. Software User's Manual AA-
EB54E-TE. Digital Equipment Corporation, Maynard MA, 1989.

Gupta, Anoop, and Milind Tambe. "Suitability of Message Passing Computer for
Implementing Production Systems." Paper Submitted to the American Association
for Artificial Intelligence's National Conference on Artificial Intelligence - 1988 (Pre-
print Release), August 1988.

Gupta, Anoop, and Charles L. Forgy. Measurements on Production Systems. Report
CMU-CS-83-167. Carnegie-Mellon University, Pittsburgh, 1983.

Hayes-Roth, F. "Rule-Based Systems", Communications of the ACM, 28: 921-932
(September 1987).

Knackstedt Richard P., and Robert H. Brown. Real-Time Artificial Intelligence Support
Systems in Ada. Independent Research and Development Report MDC Q0952-12
(Referenced with Written Permission). Space Station Division, Mcdonnell Douglas
Space Systems Company, Huntington Beach CA, 15 March 1990. (90029962)

Labhart, Jay T. 1750A Inference Knowledge Base Analysis. Unpublished Report. Merit
Technology Incorporated, Piano TX, January 1990.

I Labhart, Jay T., tal. MeriTool 2.0 User Manual. User Manual Revision 2.01B, Merit
Technology Incorporated, Plano TX, 1989.

3 Lizza, Captain Carl and Dr. Carl Friedlander. "The Pilot's Associate: A Forum for the
Integration of Knowledge Based Systems and Avionics," Proceedings of the IEEE
National Aerospace Electronics Conference. NAECON 1988. 1252-1258. New
York: IEEE Press, 1988.

Lystaad, Garr S. "The TI Dallas Inference Engine (TIDIE) an Efficient Knowledge
Representation for the Piloting Domain," Proceedings of the IEEE National
Aerospace Electronics Conference. NAECON 1987. 1348-1351. New York: IEEE
Press, 1987.

Martin, John and Dan Neiman. "Rule-based Programming in OPS83", AI Expert, 1: 54-63
(Premier Issue 1986).

McNulty, Christa. "Knowledge Engineering for a Piloting Expert System," Proceedingsof the IEEE National Aerospace Electronics Conference. NAECON 1987.
1326-1330. New York: IEEE Press, 1987.

3 Melebeck, Clovis J. CLIPS/Ada Advanced Programming Guide. Software User's
Manual 89-PE-02. Barrios Technology Incorporated, Houston, November 1989.

I 101

I
U

I

I- - --- CLIPS/Ada Architecture Manual. Software User's Manual NAS9-18002. Barrios
Technology Incorporated, Houston, November 1989.

i Miranker, Daniel P. TREAT: A Better Match Algorithm for Al Production Systems.
Report AI TR87-58. Menlo Park CA: American Association of Artificial
Intelligence, 1987.

Nayak, Pandurang, etl. "Comparison of the Rete and Treat Production Matchers for
Soar (A Summary)," Proceedings of AAAI - 88. Seventh National Conference on
Artificial Intelligence. 693-698. Los Altos CA: American Association of Artificial
Intelligence, Morgan Kaufman Publishing, distributors, 1988.

Neiman, Dan. "Adding Rete to your OPS5 Toolbox", Al Expert, 2: 42-48 (January 1987).

Nichols, Dave L., and R. Scott Evans. System Specification for the Ada Avionics Real-
Time Software (AARTS) Project. Contract Deliverable AARTS-SSS-002. Dayton
Engineering Laboratory, TRW, Inc., Dayton OH, 1 September 1987.

Pearl, Judea. Hueristics- Intelligent Search Strategies for Computer Problem Solving.
Reading MA: Addison-Wesley Publishing Company, 1984.

Prerau, D.S., "Selection of an Appropriate Domain for an Expert System", AI Magazine,
.E: 26-30 (Summer 1985).

Pressman, Roger S. Software Engineering- A Practitioner's Approach. New York:

McGraw-Hill Book Company, 1987.

Rich, Elaine, Artificial Intelligence, New York: McGraw-Hill Book Company, 1983.

Shakely, Donald J. Parallel Artificial Intelligence Search Techniques for Real-time
Applications. MS Thesis. AFIT/GCS/ENG/87D-24. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1987.

Silberschatz, Abraham, and James L. Peterson. Operating Systems Concepts (Alternate
Addition). Reading MA: Addison-Wesley Publishing Company, 1988.

TARTAN Ada VMS V1750A Compilation System (Version 2.0). Programmer' Guide.
Tartan Laboratories, Monroeville PA, 1990.

Valdez-Perez, R.E. "Inside an Expert System Shell", ALExpe, 1: 30-42 (October 1986).

van de Goor, A. J. Computer Architecture and Design. Workingham, England: Addison-
Wesley Publishing Company, 1989.

VAX Ada Programmer's Run-Time Reference Manual. Programmer's Guide AA-EF88A-
TE. Digital Equipment Corporation, Reading MA, 1985.

I 102

I
I

I
White, Wesley A. Personal Correspondence. Lead Programmer, CLIPS/Ada, BarriosTechnology Inc., Houston, 5 July 1990.Winston, Patrick H., and B.K.P. Horn. I_,I Reading MA, Addison-Wesley Publishing

Company, 1984.

I
I
I
I
I
I
I
I
I
I
I
I
I
* 103

I
I

I

Captain Franklin Jesse Fanning was born on 4 October 1962 in Laramie, Wyoming.

He graduated from Kecoughtan High School in Hampton, Virginia in 1981, going on to

attend California State University, Long Beach. After earning the degree of Bachelor of

Science in Electrical Engineering in December 1985, he was commissioned a Second

Lieutenant in the United States Air Force through the Reserve Officer's Training Corps,

and called to active duty in March of the same year.

Then-Lieutenant Fanning was assigned to the Avionics Laboratory, Wright Research

I and Development Center, Wright-Patterson AFB Ohio, where for two years he

programmed real-time display generation systems in the laboratory's Integrated Test Bed

facility. For the next three years, he was the team leader of an in-house research project

involving integration of expert systems with advanced avionics architectures. He was

promoted to the rank of captain in January 1990.

I Captain Fanning completed the coursework and research for the degree of Master of

Science in Electrical Engineering at the School of Engineering, Air Force Institute of

Technology, as a part-time student while assigned to the Avionics Laboratory.

I
Permanent Address: 1000 Elysian Park Drive

Los Angeles, California

90026

I
I
I 104

I
I

REPORT DOCUMENTATION PAGE orm 'C4-41768

cc ~ ~ 0 'c ' -- I - C1 Cd n : 'T : -al a! -c ~ iC ' ..~ e, 4- *- * **---" -soo-. -3.

"0"tj 1 1ii' ... 'nq S~qgent0nS I eau,_-l z,,% c~roer' !, V rator. ia ecuarie, s - C e: 7. e ,ro
S '. :e 24 ", ,iton . ,A 2202 .2302 _a c t t - e 11~ee Manaqerimra i o .d e . Cr,.'d -a '4.2 ,a .sn nTlcc 2

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IDecember 1990 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
AN EVALUATION OF AN Ada IMPLEMENTATION OF THE RETE
ALGORITHM FOR EMBEDDED FLIGHT PROCESSORS WU 20031112

6. AUTHOR(S)

F. Jesse Fanning, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

i Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GE/ENG/90D-70

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORiNG

W AGENCY REPORT NUMBER

System Integration Branch, System Avionics Division
Avionics Laboratory, Wright Research and Development Cente
Wright-Patterson AFB OH 45433-6543 1
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

The purpose of this research was to design and develop an expert system shell in Ada,
and to evaluate the shell's execution and size performance to determine its suitability for real-
time operation on the MIL-STD-1750A embedded flight processor. The expert system
shell uses the CLIPS/Ada inference engine, a forward-chaining Ada implementation of
Rete. The expert system shell design is presented along with an overview of the target
environment- the MIL-STD-1750A VHSIC Avionic Modular Processor (VAMP) running
under the Ada Avionics Real-Time Software (AARTS) Operating Systen. Theoretical and
empirical complexity analyses of the inference engine are presented and discussed in view
of their impact on VAMP application. The performance of this inference engine was
affected by five parameters of the knowledge base: a) the number of objects in woridng
memory, b) the structural complexity of the objects and rules, c) the number of rules which
share object match patterns, d) the number of match patterns per rule, and e) the number of
objects bound to a match pattern using negative logic. The inference engine's execution
response time was found suitable for real-time operation on the VAMP; however, its
memory requirement was not.

14. SUBJECT TERMS 15. NUMBER OF PAGES114
Expert Systems, Ada, Embedded Flight Processors,

AARTS, VAMP 1C
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACTIOF REPORT OF THIS PAGE OF ABSTRACT

lUnclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Std Z39-18
298-102

